Прямая ав ║ пл. scd, т.к. ав║cd. поэтому расстояние oт т. а до плоскости scd равно расстоянию от любой точки прямой ав до этой плоскости, в том числе и от точки м - середины отрезка ав, до плоскоти scd. δscd: проведём медиану sn , sn также высота δscd, sn⊥cd. δsmn - равнобедренный, sm=sn как медианы равных треугольников sab и scd. mh - высота δsmn , mh⊥sn . cd⊥sn и cd⊥mn , sn и mn пересекаются, принадлежат пл. smn ⇒ cd⊥ плоскости smn ⇒ cd⊥ mh , лежащей в пл. smn . mh - перпендикуляр к плоскости scd. значит, mh - расстояние от ав до пл. scd . точка о - центр основания авсd. δaos - прямоугольный:
Возьмем точку А , К и Р, они образуют какую то плоскость (по определению: любые три точки не лежащие на одной прямой образуют плоскость),
2) так как К Р Т лежат на одной прямой , то Т так же лежит в плоскости ( по определению : если две точки прямой лежат в плоскости то все точки прямой лежат в этой плоскости) - следовательно раз К и Р лежат в одной плоскоси с А, то и Т так же будет лежать в одной плоскости с А.
Задание 2.
Аксиомы стереометрии. 1) через 3 точки, не лежащие на одной прямой, можно провести плоскость, и только одну. Проводим через А и любые две из оставшихся, например, M и N. Точка Р также лежит в этой плоскости, т.к 2) если две точки прямой лежат в плоскости, то вся прямая лежит в этой плоскости. Известное следствие из аксиом: через прямую и точку, не лежащую на ней всегда можно провести плоскость, и притом только одну.
Задание 3.
Через две прямые пересекающиеся в одной точке можно провести только одну плоскость. И если другие прямые пересекаются с вышеназванными прямыми, то они тоже находятся в одной с ними плоскости. А вот через точку можно провести любое колическво прямых и многие из них будут находиться в других плоскостях.
δscd: проведём медиану sn , sn также высота δscd, sn⊥cd.
δsmn - равнобедренный, sm=sn как медианы равных треугольников sab и scd.
mh - высота δsmn , mh⊥sn .
cd⊥sn и cd⊥mn , sn и mn пересекаются, принадлежат пл. smn ⇒
cd⊥ плоскости smn ⇒ cd⊥ mh , лежащей в пл. smn .
mh - перпендикуляр к плоскости scd.
значит, mh - расстояние от ав до пл. scd .
точка о - центр основания авсd.
δaos - прямоугольный:
Задание 1.
Возьмем точку А , К и Р, они образуют какую то плоскость (по определению: любые три точки не лежащие на одной прямой образуют плоскость),
2) так как К Р Т лежат на одной прямой , то Т так же лежит в плоскости ( по определению : если две точки прямой лежат в плоскости то все точки прямой лежат в этой плоскости) - следовательно раз К и Р лежат в одной плоскоси с А, то и Т так же будет лежать в одной плоскости с А.
Задание 2.
Аксиомы стереометрии. 1) через 3 точки, не лежащие на одной прямой, можно провести плоскость, и только одну. Проводим через А и любые две из оставшихся, например, M и N. Точка Р также лежит в этой плоскости, т.к 2) если две точки прямой лежат в плоскости, то вся прямая лежит в этой плоскости. Известное следствие из аксиом: через прямую и точку, не лежащую на ней всегда можно провести плоскость, и притом только одну.
Задание 3.
Через две прямые пересекающиеся в одной точке можно провести только одну плоскость. И если другие прямые пересекаются с вышеназванными прямыми, то они тоже находятся в одной с ними плоскости. А вот через точку можно провести любое колическво прямых и многие из них будут находиться в других плоскостях.