Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
Развёрткой боковой поверхности конуса является круговой сектор радиуса 6 см и дугой 120 градусов. Найдите площадь поверхности конуса.
-------------------------
Если данный сектор свернуть так, чтобы концы дуги сошлись, а боковые стороны – радиусы окружности, частью которой является этот сектор, – совместились, получим наш конус. При этом радиус кругового сектора будет его образующей, а длина дуги - длиной окружности в основании конуса.
Площадь поверхности конуса - сумма площадей основания и боковой поверхности.
Данная развертка - третья часть круга, т.к. ее градусная мера - треть от полной окружности. Площадь сектора = площади боковой поверхности конуса.
Длина С дуги сектора - длина окружности основания конуса.
Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см.
Пусть сторона пятиугольника равна х.
Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника.
Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36°
sin36=(х/2)/R,
x=2Rsin36=(16sin36·√3)/3≈5.43см.
Развёрткой боковой поверхности конуса является круговой сектор радиуса 6 см и дугой 120 градусов. Найдите площадь поверхности конуса.
-------------------------
Если данный сектор свернуть так, чтобы концы дуги сошлись, а боковые стороны – радиусы окружности, частью которой является этот сектор, – совместились, получим наш конус. При этом радиус кругового сектора будет его образующей, а длина дуги - длиной окружности в основании конуса.
Площадь поверхности конуса - сумма площадей основания и боковой поверхности.
Данная развертка - третья часть круга, т.к. ее градусная мера - треть от полной окружности. Площадь сектора = площади боковой поверхности конуса.
Длина С дуги сектора - длина окружности основания конуса.
С=2πR:3
С=2π•6:3=4π
4π=2π•r, где r- радиус основания конуса.
r=2
Площадь основания
S осн=πr²=4π см²
S бок=π r L=π•2•6=12π или πR²:3=(36π:3=12) см²
S полн=16π см²