В остроугольном треугольнике две высоты равны 4 и 8. Длина одной из двух сторон, к которым проведены эти высоты, равна 5. Найдите длину другой стороны.
Для того, чтобы все точки прямой a*x+b*y+c=0 находились на равных расстояниях от точек А и В, эта прямая должна быть перпендикулярна прямой АВ и проходить через середину отрезка АВ. Пусть x1 и y1 - координаты точки А, а x2 и y2 - координаты точки В; составим уравнение прямой АВ:
(x-x1)/(x2-x1)=(y-y1)/(y2-y1), (x-4)/(6-4)=(y-4)/(9-4), (x-4)/2=(y-4)/5, y=5/2*x-6. Отсюда следует, что угловой коэффициент этой прямой k1=5/2. А так как прямая a*x+b*y+c=0 перпендикулярна прямой АВ, то её угловой коэффициент k2=-1/k1=-2/5. Пусть точка С - середина отрезка АВ; найдём её координаты x3 и y3:
x3=(x1+x2)/2=5, y3=(y1+y2)/2=13/2. Теперь составляем уравнение прямой a*x+b*y+c=0: y-y3=k2*(x-x3), y-13/2=-2/5*(x-5), 4*x+10*y-85=0.
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
ответ: 4*x+10*y-85=0.
Объяснение:
Для того, чтобы все точки прямой a*x+b*y+c=0 находились на равных расстояниях от точек А и В, эта прямая должна быть перпендикулярна прямой АВ и проходить через середину отрезка АВ. Пусть x1 и y1 - координаты точки А, а x2 и y2 - координаты точки В; составим уравнение прямой АВ:
(x-x1)/(x2-x1)=(y-y1)/(y2-y1), (x-4)/(6-4)=(y-4)/(9-4), (x-4)/2=(y-4)/5, y=5/2*x-6. Отсюда следует, что угловой коэффициент этой прямой k1=5/2. А так как прямая a*x+b*y+c=0 перпендикулярна прямой АВ, то её угловой коэффициент k2=-1/k1=-2/5. Пусть точка С - середина отрезка АВ; найдём её координаты x3 и y3:
x3=(x1+x2)/2=5, y3=(y1+y2)/2=13/2. Теперь составляем уравнение прямой a*x+b*y+c=0: y-y3=k2*(x-x3), y-13/2=-2/5*(x-5), 4*x+10*y-85=0.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301