1.Надо говорить о прямых не в пространстве, а на плоскости. Данное утверждение не доказывается, а является формулировкой аксиомы параллельности. Если в формулировке звучит, что существует только одна прямая параллельная данной, то эта аксиома для геометрии Евклида. Если две, то это геометрия Лобачевского. Если таких прямых не существует, то геометрия Римана. 2.Возможны три варианта взаимного расположения прямой и плоскости. Взаимное расположение прямой и плоскости. Прямая параллельна плоскости, если она не имеет с плоскостью общих точек. На левомрисунке прямая параллельна плоскости . 2. Прямая пересекает плоскость, если она имеет с плоскостью ровно одну общую точку. 3. Прямая лежит в плоскости, если каждая точка прямой принадлежит этой плоскости.
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
Данное утверждение не доказывается, а является формулировкой аксиомы параллельности.
Если в формулировке звучит, что существует только одна прямая параллельная данной, то эта аксиома для геометрии Евклида.
Если две, то это геометрия Лобачевского.
Если таких прямых не существует, то геометрия Римана.
2.Возможны три варианта взаимного расположения прямой и плоскости. Взаимное расположение прямой и плоскости.
Прямая параллельна плоскости, если она не имеет с плоскостью общих точек. На левомрисунке прямая параллельна плоскости .
2. Прямая пересекает плоскость, если она имеет с плоскостью ровно одну общую точку.
3. Прямая лежит в плоскости, если каждая точка прямой принадлежит этой плоскости.