В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
galeevaazaliyaqwert
galeevaazaliyaqwert
21.12.2022 09:10 •  Геометрия

В правильной четырёхугольной пирамиде SABCD все рёбра равны 5. На рёбрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA = AQ = RC = 2. а) Докажите, что плоскость PQR перпендикулярна ребру SD.
б) Найдите расстояние от вершины D до плоскости PQR.

Показать ответ
Ответ:
Kirill91623
Kirill91623
23.08.2021 14:50

Пусть А - начало координат.

Ось X - AB

Ось Y - AD

Ось Z - перпендикулярно ABCD в сторону S

Высота пирамиды ( из треугольника ACS )

√(5^2-25/2) = 5/√2

Координаты точек

P( 1;1;√2)

Q(2;0;0)

R(5;3;0)

S(2,5;2,5;5/√2)

D(0;5;0)

Вектор

SD (-2,5;2,5;-5/√2)

Уравнение плоскости PQR

ax+by+cz+d=0

подставляем координаты точек P Q R

a+b+√2c+d=0

2a+d=0

5a+3b+d=0

Пусть d= 2  Тогда a= -1 b= 1 c=-√2

Уравнение плоскости

-x+y-√2z+2=0

или

-2,5x +2,5y-5z/√2+5=0

нормальное уравнение плоскости

k= √(1+1+2)=2

-x/2+y/2-z/√2+1=0

a) Нормаль к плоскости PQR

-2,5x +2,5y-5z/√2+5=0

cовпадает с вектором

SD  (-2,5;2,5;-5/√2)

Перпендикулярны

б) Подставляем координаты точки D(0;5;0) в нормальное уравнение плоскости PQR

-x/2+y/2-z/√2+1=0

для нахождения расстояния

5/2+1 = 3,5

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота