а) Дано уравнение 16x^2 - 9y^2 - 64x -54y - 161 = 0.
Выделим полные квадраты.
16(x^2 - 4x + 4) - 16*4 - 9(y^2 + 6y + 9) + 9*9 - 161 = 0.
16(x - 2)² - 9(y + 3)² = 144.
Разделим обе части уравнения на 144.
((x - 6)²/169) + ((y + 5)²/144) = 1, или так:
(16(x - 2)²)/144) - (9(y + 3)²/144) = 144/144.
(x - 2)²/9 + (y + 3)²/16 = 1 или в каноническом виде:
(x - 2)²/3² + (y + 3)²/4² = 1.
Это уравнение гиперболы с центром в точке О(2; -3).
Полуоси гиперболы равны: а = 3, b = 4.
Подробнее параметры и график даны во вложениях.
Второй угол между диагоналями прямоугольника равен 58° как вертикальный.
Так как сумма всех углов 360°, то
360°-58°-58°=244°
244°:2=122° - два других угла при диагоналях.
Рассмотрим треугольники, образовавшиеся в прямоугольника.
Они попарно равны.
Сумма всех углов каждого треугольника 180°.
Отсюда 180°-58°=122°
122°:2=61° - угол между диагональю и меньшей стороной прямоугольника;
180°-122°=58°
58°:2=29° - угол между диагональю и большей стороной.
ответ: величины углов, которые образует диагональ со сторонами прямоугольника 29° и 61°.
При проверке 29°+61°=90° - прямой угол прямоугольника.
а) Дано уравнение 16x^2 - 9y^2 - 64x -54y - 161 = 0.
Выделим полные квадраты.
16(x^2 - 4x + 4) - 16*4 - 9(y^2 + 6y + 9) + 9*9 - 161 = 0.
16(x - 2)² - 9(y + 3)² = 144.
Разделим обе части уравнения на 144.
((x - 6)²/169) + ((y + 5)²/144) = 1, или так:
(16(x - 2)²)/144) - (9(y + 3)²/144) = 144/144.
(x - 2)²/9 + (y + 3)²/16 = 1 или в каноническом виде:
(x - 2)²/3² + (y + 3)²/4² = 1.
Это уравнение гиперболы с центром в точке О(2; -3).
Полуоси гиперболы равны: а = 3, b = 4.
Подробнее параметры и график даны во вложениях.
Второй угол между диагоналями прямоугольника равен 58° как вертикальный.
Так как сумма всех углов 360°, то
360°-58°-58°=244°
244°:2=122° - два других угла при диагоналях.
Рассмотрим треугольники, образовавшиеся в прямоугольника.
Они попарно равны.
Сумма всех углов каждого треугольника 180°.
Отсюда 180°-58°=122°
122°:2=61° - угол между диагональю и меньшей стороной прямоугольника;
180°-122°=58°
58°:2=29° - угол между диагональю и большей стороной.
ответ: величины углов, которые образует диагональ со сторонами прямоугольника 29° и 61°.
При проверке 29°+61°=90° - прямой угол прямоугольника.