Это же элементарно, нам дам прямоугольник, его диагональ, которая равна 25 см, и одна его сторона, которая равна 7, диагональ делит прямоугольник на 2 прямоугольных треугольника, которые ещё и равны между собой, рассмотрим 1 из них: его гипотенуза равна 25 (см), а 1 катет равен 7 (см), находим 2-й катет по теореме Пифагора: 25*25 (То есть 25 в квадрате) - 7*7 (7 в квадрате) = 625 - 49 = 576, а √576 = 24 То есть 24 (см) - это второй катет, и ещё одна сторона прямоугольника, ну и теперь путём несложным решений, (24+7)*2 = 62 (см) - это и есть периметр прямоугольника
Точка Д равноудалена значит перпендикуляр(растояние до плоскости) проецируется в центр вписанной окружности в точку К. В треугольнике АВС проведём радиус КЕ до пересечения с АВ в точке Е.По теореме Пифагора ЕК=корень квадратный из(ДЕквадрат-ДК квадрат)= корень из (100-36)=6. ЕК=R, где R -радиус вписанной окружности.Площадь правильного треугольника через радиус вписанной окружности выражается формулой S=3 умноженное на корень квадратный из 3 и умноженное на R квадрат=3 на корень из 3 и на 36=108 на корень из 3.
его гипотенуза равна 25 (см), а 1 катет равен 7 (см), находим 2-й катет по теореме Пифагора: 25*25 (То есть 25 в квадрате) - 7*7 (7 в квадрате) = 625 - 49 = 576, а √576 = 24
То есть 24 (см) - это второй катет, и ещё одна сторона прямоугольника, ну и теперь путём несложным решений, (24+7)*2 = 62 (см) - это и есть периметр прямоугольника
Объяснение:
Точка Д равноудалена значит перпендикуляр(растояние до плоскости) проецируется в центр вписанной окружности в точку К. В треугольнике АВС проведём радиус КЕ до пересечения с АВ в точке Е.По теореме Пифагора ЕК=корень квадратный из(ДЕквадрат-ДК квадрат)= корень из (100-36)=6. ЕК=R, где R -радиус вписанной окружности.Площадь правильного треугольника через радиус вписанной окружности выражается формулой S=3 умноженное на корень квадратный из 3 и умноженное на R квадрат=3 на корень из 3 и на 36=108 на корень из 3.