Что-то не так. Во-первых, опечатка - не призма, а пирамида. Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды. Значит, считаем, что это 4-угольная правильная пирамида. В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней). Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным. Нижние вершины куба лежат на средних линиях основания KM и LN. Справа я нарисовал сечение пирамиды плоскостью SLN. В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба, а основание PR = P1R1 = x√2 - диагонали грани куба. Теперь решаем задачу. Сторона основания пирамиды а, диагональ AC = BD = a√2, OC = a√2/2, угол наклона бокового ребра α. В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α. В треугольнике LOS катет OL = a/2, по теореме Пифагора SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α) SL = a/2*√(1 + 2tg α) Угол наклона апофемы к плоскости основания OLS = β: tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α В треугольнике RR1L катет RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α) Но мы знаем, что PR = x√2 и NP = RL. Получаем NL = NP + PR + RL a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2
Номер 4
<АВС=180-114=66 градусов
<А=180-(66+38)=180-104=76 градусов
Номер 5
<38=<А=38 градусов,как вертикальные
<В=<С=(180-38):2=142:2=71 градус
Номер 10
<68=<А=68 градусов,как вертикальные
<В=180-(42+68)=70 градус
Внешний угол В
180-70=110 градусов
Номер 11
<?=50 градусов,как вертикальный
<С=40,как вертикальный
<А=180-(40+50)=90 градусов
Номер 16
В задании какая-то ошибка,наверное в соотношении углов 3:5:9
Номер 17
На чертеже вертикальные углы,они равны внутренним углам треугольника,а Сумма внутренних углов треугольника равна 180 градусов,поэтому
<1+<2+<3=180 градусов
Номер 22
<С=180-115=65 градусов
<А+<В=115 градусов
<В=(115-25):2=45 градусов
<А=45+25=70 градусов
Номер 23
<В=3Х
<А=Х
3Х-Х=40
2Х=40
Х=40:2=20 градусов
<В=20•3=60 градусов
<А=20 градусов
<1=180-20=160 градусов
<2=180-60=120 градусов
Номер 28
<ВDC+<ADB=180 градусов,как смежные
<АDB=180-120=60 градусов
<АВD=180-(60+90)=30 градусов
<В=30•2=60 градусов
<С=90-60=30 градусов
Номер 29
<2=<1-<3=84 градуса
<2=4Х
<3=Х
<3=84:4=21 градус
<?=180-(21+84)=180-105=75 градусов
<1=180-75=105 градусов
Объяснение:
Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды.
Значит, считаем, что это 4-угольная правильная пирамида.
В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней).
Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным.
Нижние вершины куба лежат на средних линиях основания KM и LN.
Справа я нарисовал сечение пирамиды плоскостью SLN.
В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба,
а основание PR = P1R1 = x√2 - диагонали грани куба.
Теперь решаем задачу.
Сторона основания пирамиды а, диагональ AC = BD = a√2,
OC = a√2/2, угол наклона бокового ребра α.
В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α.
В треугольнике LOS катет OL = a/2, по теореме Пифагора
SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α)
SL = a/2*√(1 + 2tg α)
Угол наклона апофемы к плоскости основания OLS = β:
tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α
В треугольнике RR1L катет
RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α)
Но мы знаем, что PR = x√2 и NP = RL. Получаем
NL = NP + PR + RL
a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2