Объяснение:
НОД (216; 480) = 24.
Разложим на простые множители 216
216 = 2 • 2 • 2 • 3 • 3 • 3
Разложим на простые множители 480
480 = 2 • 2 • 2 • 2 • 2 • 3 • 5
Выберем одинаковые простые множители в обоих числах.
2 , 2 , 2 , 3
Находим произведение одинаковых простых множителей и записываем ответ
НОД (216; 480) = 2 • 2 • 2 • 3 = 24
НОК (216, 480) = 4320
Выберем в разложении меньшего числа (216) множители, которые не вошли в разложение
3 , 3
Добавим эти множители в разложение бóльшего числа
2 , 2 , 2 , 2 , 2 , 3 , 5 , 3 , 3
Полученное произведение запишем в ответ.
НОК (216, 480) = 2 • 2 • 2 • 2 • 2 • 3 • 5 • 3 • 3 = 4320
ответ: 60*, 120*, 120* 60*.
Сумма углов в четырехугольнике равна (n-2)*180=(4-2)*180*=2*180*=360*.
Обозначим трапецию через ABCD, где AB=BC=СD (по условию).
∠BAC=∠BCA, т.к. треугольник ABC - равнобедренный.
∠CAD=∠ACB, как накрест лежащие при BC║AD и секущей CD.
Обозначим ∠BAC=∠BCA=CAD через х. Тогда ∠ADC=2x, так как АС является биссектрисой угла BAD.
Cосотавим уравнение:
2х+2х+90*+х+90*+х=360*.
6х=360*-180*;
6х=180*;
х=30*;
Тогда ∠BAD=2*30*=60*;
∠ABC=90*+30*=120*;
∠BCD=∠ABC=120*;
∠CDA=∠BAD=60*.
Проверим:
60*+120*+120*+60*=360*.
Объяснение:
НОД (216; 480) = 24.
Разложим на простые множители 216
216 = 2 • 2 • 2 • 3 • 3 • 3
Разложим на простые множители 480
480 = 2 • 2 • 2 • 2 • 2 • 3 • 5
Выберем одинаковые простые множители в обоих числах.
2 , 2 , 2 , 3
Находим произведение одинаковых простых множителей и записываем ответ
НОД (216; 480) = 2 • 2 • 2 • 3 = 24
НОК (216, 480) = 4320
Разложим на простые множители 216
216 = 2 • 2 • 2 • 3 • 3 • 3
Разложим на простые множители 480
480 = 2 • 2 • 2 • 2 • 2 • 3 • 5
Выберем в разложении меньшего числа (216) множители, которые не вошли в разложение
3 , 3
Добавим эти множители в разложение бóльшего числа
2 , 2 , 2 , 2 , 2 , 3 , 5 , 3 , 3
Полученное произведение запишем в ответ.
НОК (216, 480) = 2 • 2 • 2 • 2 • 2 • 3 • 5 • 3 • 3 = 4320
ответ: 60*, 120*, 120* 60*.
Объяснение:
Сумма углов в четырехугольнике равна (n-2)*180=(4-2)*180*=2*180*=360*.
Обозначим трапецию через ABCD, где AB=BC=СD (по условию).
∠BAC=∠BCA, т.к. треугольник ABC - равнобедренный.
∠CAD=∠ACB, как накрест лежащие при BC║AD и секущей CD.
Обозначим ∠BAC=∠BCA=CAD через х. Тогда ∠ADC=2x, так как АС является биссектрисой угла BAD.
Cосотавим уравнение:
2х+2х+90*+х+90*+х=360*.
6х=360*-180*;
6х=180*;
х=30*;
Тогда ∠BAD=2*30*=60*;
∠ABC=90*+30*=120*;
∠BCD=∠ABC=120*;
∠CDA=∠BAD=60*.
Проверим:
60*+120*+120*+60*=360*.