Треугольники ВОМ и AOD подобны по двум углам (<AOD=<BOM как вертикальные, а <OАD=<BMА как накрест лежащие при параллельных ВС и AD и секущей АМ). Коэффициент подобия равен k=BM/AD=1/2. Тогда ОМ=(1/3)*АМ, OD=(2/3)*AD.
Если речь идет о векторах, то мы видим, что вектор ОР=ОМ+МР, причем вектор ОМ=(1/3)*АМ = (1/3)(АВ+BM) = (1/3)(АВ+AD/2) =AB/3+AD/6. Вектор MP=MC+CP = AD/2-AB/2. Тогда
Треугольники ВОМ и AOD подобны по двум углам (<AOD=<BOM как вертикальные, а <OАD=<BMА как накрест лежащие при параллельных ВС и AD и секущей АМ). Коэффициент подобия равен k=BM/AD=1/2. Тогда ОМ=(1/3)*АМ, OD=(2/3)*AD.
Если речь идет о векторах, то мы видим, что вектор ОР=ОМ+МР, причем вектор ОМ=(1/3)*АМ = (1/3)(АВ+BM) = (1/3)(АВ+AD/2) =AB/3+AD/6. Вектор MP=MC+CP = AD/2-AB/2. Тогда
ОР = ОМ+МР = AB/3+AD/6+AD/2-AB/2 = (2/3)*AD - (1/6)*AB.
Или так: вектор ОР=ОD+DР, причем вектор ОD=(2/3)*BD.
Вектор BD=AD-AB. Тогда вектор OD=(2/3)*AD-(2/3)*AB.
ОР = ОD+DР = (2/3)*AD-(2/3)*AB+AB/2 = (2/3)*AD - (1/6)*AB.
Следовательно
ОР < (2/3)*AD + (1/6)*AB, что и требовалось доказать.
Решаем систему
2x - y - 4 = 0
x + 3y + 5 = 0
получаем х = 1, у = - 2
это координаты точки пересечения прямых, и эта точка будет принадлежать искомой прямой.
Теперь запишем параллельную прямую так:
y = (- 2x - 6)/3= - 2x/3 - 2
Коэффициент при х, который = - 2/3, указывает на угол наклона прямой к оси х, и будет такой же у искомой прямой, т.к. они параллельны.
Теперь запишем уравнение искомой прямой
y = - 2x/3 + b
чтобы найти b подставим в уравнение координаты точки (1 ; - 2)
- 2 = - 2*1/3 + b
b = - 4/3
Подставим значение b и получим формулу
y = - 2x/3 - 4/3
Дополнение: решение первой системы уравнений2x - y - 4 = 0
x + 3y + 5 = 0
2x - y - 4 = 0
- 2x - 6y - 10 = 0 складываем уравнения:
- 7y = 14
у = - 2 подставляем во второе уравнение
x + 3(- 2) + 5 = 0
х = 1