· отрезок прямой, перпендикулярной плоскости, соединяющий данную точку с точкой на плоскости называется перпендикуляром из данной точки к данной плоскости.
· конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.
· любой отрезок, соединяющий данную точку с точкой на плоскости и не являющийся перпендикуляром к плоскости, называется наклонной.
· конец отрезка, лежащий в плоскости, называется основанием наклонной.
рис. 1.
на рисунке из точки а проведены к плоскости α перпендикуляр ав и наклонная ас. точка в - основание перпендикуляра, точка с - основание наклонной, вс - проекция наклонной ас на плоскость α.
2) доказательство того, что перпендикуляр корочек наклонной
на рисунке 2 изображена плоскость α, перпендикуляр к ней ao, наклонная ab, а также показан отрезок bo, соединяющий основания наклонной и перпендикуляра. отрезки ao, bo и ab образуют δaob.
рис. 2.
рассмотрим δaob, из определения перпендикуляра следует, что он прямоугольный. перпендикуляр ao является катетом этого треугольника, а наклонная ab – его гипотенузой. катет прямоугольного треугольника всегда меньше его гипотенузы (по теореме пифагора), следовательно, перпендикуляр всегда короче наклонной.
3) определение проекции
отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
отрезок bo на рисунке 2 – является проекцией наклонной ab.
4) теорема о сравнительной длине наклонных и их проекций
а) любая наклонная больше своей проекции.
доказательство:
вновь рассмотрим δaob, изображенный на рис. 2, из определения перпендикуляра следует, что он прямоугольный. проекция bo является катетом этого треугольника, а наклонная ab – его гипотенузой, т. к. катет прямоугольного треугольника всегда меньше его гипотенузы, следовательно, проекция наклонной на плоскость всегда короче самой наклонной.
б) равные наклонные имеют равные проекции
доказательство: рассмотрим треугольники aob и aod, они равны, т. к. равны их гипотенузы ab и ad, и углы aob и aod (они прямые), а сторона ao у них общая. из равенства треугольников следует и равенство их сторон bo = od, что и требовалось доказать.
в) если проекции наклонных равны, то и наклонные равны. доказывается аналогично утверждению б.
г) большей наклонной соответствует большая проекция.
доказательство:
рассмотрим прямоугольные треугольники aob и aod, ab > ad.
=
=
но так как ab > ad => ab2 > ad2 => > =>
=> bo > do. что и требовалось доказать.
д) из двух наклонных больше та, у которой проекция больше. доказывается аналогично г.
Древнеегипетская астрономия уходит в глубокую старину: египтяне были одними из первых, кто вёл наблюдения звёздного неба; авторы МЭСБЕ ставят их астрономию в один ряд с китайской[en], индийской и вавилонской (халдеи)[1]. В Египте и общавшихся с ним странах установился довольно точный определения времени года посредством гелиакического восхода звезды Сириус, — летосчисление глубокой древности. Служа для определения времени года, восход или заход определённой звёзды мог служить также и для оценки часа ночи[2]. Египтяне первыми определили год в 365 дней и 6 часов[3].
Для египтян разлив священной реки Нил — земного отражения небесного Млечного Пути[4] — всегда совпадал с восходом Сириуса[5]. Появление Сириуса повторяется через правильные промежутки времени, а именно через каждые 365 1/4 дней[6]. Каждые четыре года Сириус восходил днём позже, из-за чего через 365 х 4 = 1460 лет разница между гражданским календарём (360 дней + пять дней-эпагоменов) и солнечным годом достигала целого года[5], который и прибавлялся к 1460 годам, образуя цикл из 1461 солнечного года[6]. Весь 1461-й год сириусного цикла (сотического[en] — по греческому именованию звезды) считался одним днём Сириуса и превращался в годовой праздник египетского народа[7]. Также каждый восход Сириуса сопровождался известными празднествами, хотя и не приходился на день гражданского Нового года. В древнеегипетских надписях сохранились данные о восходе Сириуса.[5]
Библейское Пятикнижие, переданное египетским жрецом Моисеем (ок. XV века до н. э.), включает космогонические знания. Греческая античная астрономия (VI век до н. э. — V век н. э.) стала плодом учёных мужей, обучавшихся у египетских жрецов (Фалес, Пифагор, Демокрит, Аристарх, Евдокс и др.)[3]
1) определение перпендикуляра и наклонной.
пусть дана плоскость и не лежащая на ней точка.
тогда:
· отрезок прямой, перпендикулярной плоскости, соединяющий данную точку с точкой на плоскости называется перпендикуляром из данной точки к данной плоскости.
· конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.
· любой отрезок, соединяющий данную точку с точкой на плоскости и не являющийся перпендикуляром к плоскости, называется наклонной.
· конец отрезка, лежащий в плоскости, называется основанием наклонной.
рис. 1.
на рисунке из точки а проведены к плоскости α перпендикуляр ав и наклонная ас. точка в - основание перпендикуляра, точка с - основание наклонной, вс - проекция наклонной ас на плоскость α.
2) доказательство того, что перпендикуляр корочек наклонной
на рисунке 2 изображена плоскость α, перпендикуляр к ней ao, наклонная ab, а также показан отрезок bo, соединяющий основания наклонной и перпендикуляра. отрезки ao, bo и ab образуют δaob.
рис. 2.
рассмотрим δaob, из определения перпендикуляра следует, что он прямоугольный. перпендикуляр ao является катетом этого треугольника, а наклонная ab – его гипотенузой. катет прямоугольного треугольника всегда меньше его гипотенузы (по теореме пифагора), следовательно, перпендикуляр всегда короче наклонной.
3) определение проекции
отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
отрезок bo на рисунке 2 – является проекцией наклонной ab.
4) теорема о сравнительной длине наклонных и их проекций
а) любая наклонная больше своей проекции.
доказательство:
вновь рассмотрим δaob, изображенный на рис. 2, из определения перпендикуляра следует, что он прямоугольный. проекция bo является катетом этого треугольника, а наклонная ab – его гипотенузой, т. к. катет прямоугольного треугольника всегда меньше его гипотенузы, следовательно, проекция наклонной на плоскость всегда короче самой наклонной.
б) равные наклонные имеют равные проекции
доказательство: рассмотрим треугольники aob и aod, они равны, т. к. равны их гипотенузы ab и ad, и углы aob и aod (они прямые), а сторона ao у них общая. из равенства треугольников следует и равенство их сторон bo = od, что и требовалось доказать.
в) если проекции наклонных равны, то и наклонные равны. доказывается аналогично утверждению б.
г) большей наклонной соответствует большая проекция.
доказательство:
рассмотрим прямоугольные треугольники aob и aod, ab > ad.
=
=
но так как ab > ad => ab2 > ad2 => > =>
=> bo > do. что и требовалось доказать.
д) из двух наклонных больше та, у которой проекция больше. доказывается аналогично г.
Древнеегипетская астрономия уходит в глубокую старину: египтяне были одними из первых, кто вёл наблюдения звёздного неба; авторы МЭСБЕ ставят их астрономию в один ряд с китайской[en], индийской и вавилонской (халдеи)[1]. В Египте и общавшихся с ним странах установился довольно точный определения времени года посредством гелиакического восхода звезды Сириус, — летосчисление глубокой древности. Служа для определения времени года, восход или заход определённой звёзды мог служить также и для оценки часа ночи[2]. Египтяне первыми определили год в 365 дней и 6 часов[3].
Для египтян разлив священной реки Нил — земного отражения небесного Млечного Пути[4] — всегда совпадал с восходом Сириуса[5]. Появление Сириуса повторяется через правильные промежутки времени, а именно через каждые 365 1/4 дней[6]. Каждые четыре года Сириус восходил днём позже, из-за чего через 365 х 4 = 1460 лет разница между гражданским календарём (360 дней + пять дней-эпагоменов) и солнечным годом достигала целого года[5], который и прибавлялся к 1460 годам, образуя цикл из 1461 солнечного года[6]. Весь 1461-й год сириусного цикла (сотического[en] — по греческому именованию звезды) считался одним днём Сириуса и превращался в годовой праздник египетского народа[7]. Также каждый восход Сириуса сопровождался известными празднествами, хотя и не приходился на день гражданского Нового года. В древнеегипетских надписях сохранились данные о восходе Сириуса.[5]
Библейское Пятикнижие, переданное египетским жрецом Моисеем (ок. XV века до н. э.), включает космогонические знания. Греческая античная астрономия (VI век до н. э. — V век н. э.) стала плодом учёных мужей, обучавшихся у египетских жрецов (Фалес, Пифагор, Демокрит, Аристарх, Евдокс и др.)[3]