Вершины прямоугольного треугольника ABC с гипотенузой AB лежат на окружности ω1 с центром в точке O и радиусом R. Через гипотенузу AB и катет BC прямоугольного треугольника ABC проходит прямая a, параллельная катету AC. Окружности ω2 и ω3 с центрами в точках A и B и радиусами 5 см и 7 см касаются прямой a в точках K и L соответственно и касаются прямой b в точках M и N соответственно. Найди радиус R окружности, если
Нехай, х- коефіцієнт пропорційності,то кут 1 = 2х, кут 2 = 3х, кут3 = 7х
кут 1+кут2 +кут 3 = 180 градусів ( сума внутрішніх кутів трикутника = 180 градусів)
Складаємо рівняння:
2х+3х+7х=180 градусів
12х = 180 градусів
х= 180/12
х= 15 градусів
кут 1= 15помножити на 2 = 30 градусів,кут 2 = 15 помножити на 3 = 45 градусів, кут 3 = 15 помножити на 7 = 105 градусів
Відповідь: кут1 = 30 градусів, кут2 = 45 градусів, кут 3 = 105 градусів
Перевірка: 30+45+105 = 180 градусів
Перевірку писати необов'язково. Якщо вийшло 180 градусів, значить все виконано правильно
пусть АВ=х
тогда ВС=21-х
ΔАВС - прямоугольный
по теореме Пифагора:
х²+(21-х)²=(√221)²
х²+(441-42х+х²)=221
х²+441-42х+х²-221=0
2х²-42х-220=0
х²-21х-110=0
Д=(-21)²-4*1*(-110)=441-440=1
х1=(21+1)/2=22/2=11
х2=(21-1)/2=20/2=10
если АВ=10, то ВС=21-10=11
если АВ=11, то ВС=21-11=10
⇒ в любом случае одна сторона 10, другая 11
пусть АВ=10, а ВС=11
проведем высоту ВН
есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е.
ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221
рассмотрим ΔАВС
его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55
ΔАВС=ΔАСД
⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110