Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);
получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)
площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):
а/b = 30/28 = 15/14
a/c = 30/26 = 15/13
b/c = 28/26 = 14/13
можно записать три стороны:
a = 15c/13; b = 14c/13 и с.
площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)
Объяснение: Биссектриса делит угол 130° на 2 равных по 65°.
Высота отсекает от треугольника прямоугольный треугольник с острым углом между высотой и боковой стороной 15°. (65°-50°=15°). Сумма острых углов треугольника 90°. Поэтому второй острый угол этого треугольника будет 90°-15°=75°. Получится, что сумма двух углов треугольника 130°+75°=205°, чего быть не может. А есть ведь ещё и третий угол.
Встречается подобная задача, где угол между высотой и биссектрисой 10°. Тогда решение возможно. Углы при основании получим 35° и 15°. При проверке сумма углов треугольника 130°+35°+15°=180°.
ответ: стороны треугольника 13; 14; 15
Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);
получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)
площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):
а/b = 30/28 = 15/14
a/c = 30/26 = 15/13
b/c = 28/26 = 14/13
можно записать три стороны:
a = 15c/13; b = 14c/13 и с.
площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)
полупериметр = ((15/13)+(14/13)+1)*(c/2) = 21c/13
84 = корень из((21с/13)*(6c/13)*(7c/13)*(8c/13))
84 = 7*3*4*c^2/169
c^2 = 169
c = 13
b = 14
a = 15
ответ: Такого треугольника не может быть.
Объяснение: Биссектриса делит угол 130° на 2 равных по 65°.
Высота отсекает от треугольника прямоугольный треугольник с острым углом между высотой и боковой стороной 15°. (65°-50°=15°). Сумма острых углов треугольника 90°. Поэтому второй острый угол этого треугольника будет 90°-15°=75°. Получится, что сумма двух углов треугольника 130°+75°=205°, чего быть не может. А есть ведь ещё и третий угол.
Встречается подобная задача, где угол между высотой и биссектрисой 10°. Тогда решение возможно. Углы при основании получим 35° и 15°. При проверке сумма углов треугольника 130°+35°+15°=180°.
Подробное решение такой задачи дано мной на