Вравнобедренной трапеции авсд углы при основании ад равны 45, диагональ ас является биссектрисой угла вад. биссектриса угла всд пересекает основание ад в точке к, а отрезок вк пересекает диагональ ас в точке q. найдите площадь треугольника авq, если площадь трапеции авсд равна 3 + 2 * корень из 2 если есть возможность, , добавьте чертёж))
ABCD - трапеция (AB=CD)
L A = L D = 45 град. =>
L B = L C = 180 - L A = 180 - 45 = 135 град.
L BAC = L CAD = L A /2 = 45/2 = 22,5 град.
L DCK = L KCB = L C /2 = 135 /2 = 67,5 град.
Треугольник CKD:
L C = 45 град.
L DCK = 67,5 град. =>
L CKD = 180 - (L C + L DCK) = 180 - (45 + 67,5) = 67,5 град. =>
CD = KD (треугольник CKD равнобедренный)
Треугольник ACK:
L CAK = L CAD = 22,5 град.
L AKC = 180 - L CKD = 180 - 67,5 = 112,5 град. =>
L ACK = 180 - (L CAK + LAKC) = 180 - (22,5 + 112,5) = 45 град.
Треугольник ABC:
L BAC = 22,5 град.
L B = 135 град. =>
L ACB = 180 - (L BAC + L B) = 180 - (22,5 + 135) = 22,5 град. =>
AB = BC (треугольник АВС равнобедренный
Трапеция равнобедренная =>
AB = BC = CD = KD =>
CD // BK =>
BCDK - ромб (BC // DK и CD // BK и cтороны равны) =>
в трегольнике ABK стоороны AB = BK =>
площадь трапеции = сумме трех равных треугольников: ABK, BKC и KCD =>
ABK = S трап / 3 = (3 + 2V2) /3 =>
S (ABQ) = 1/2 * S (ABC) = 1/2 * (3 + V2)/3 = (3 + V2) /6 - площаль ABQ