З точки до прямої проведено дві похилі. Довжина однієї з них 30см, а довжина її проекції на площину дорівнює 18см. Знайти довжину другої похилої, якщо її проекція дорівнює 15см.
1) Раз ВО разделила угол В пополам, то угол ОВС=1/2 углаВ=160/2=80о. Отношение 3:5 показывает, что угол В разделен на 8 частей и 3 части, т. е. 160/8*3=60о приходится на угол АВЕ, а 160/2*5=100о приходится на угол ЕВС. Отсюда угол ЕВО= разности между углами ЕВС и ОВС, т. е. 100о-80о=20о. Получается, что на чертеже луч ВЕ расположен правее луча ВО.
2) Обозначим высоту ВН.
Р тр-ка АВН: АВ+АН+5=18;
Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства:
АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС.
3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
1) Раз ВО разделила угол В пополам, то угол ОВС=1/2 углаВ=160/2=80о. Отношение 3:5 показывает, что угол В разделен на 8 частей и 3 части, т. е. 160/8*3=60о приходится на угол АВЕ, а 160/2*5=100о приходится на угол ЕВС. Отсюда угол ЕВО= разности между углами ЕВС и ОВС, т. е. 100о-80о=20о. Получается, что на чертеже луч ВЕ расположен правее луча ВО.
2) Обозначим высоту ВН.
Р тр-ка АВН: АВ+АН+5=18;
Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства:
АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС.
3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
Дано:
ΔАВС
окр. (О; ОС)
дуга ВС : дуга АС : дуга АВ = 3 : 7 : 8
ВС = 20
Найти: ОС.
Пусть k - одна часть, тогда дуга ВС = 3k, дуга АС = 7k, дуга АВ = 8k. Т.к. в окружности 360°, то составим и решим уравнение:
3k + 7k + 8k = 360;
18k = 360;
k = 20.
Найдем дугу ВС: дуга ВС = 3 * 20 = 60°.
∠ВОС - центральный, опирается на дугу ВС, значит ∠ВОС = 60°.
ΔВОС - равнобедренный, т.к. ОВ = ОС (радиусы), по свойству углов в равнобедренном треугольнике ∠ОВС = ∠ОСВ = (180° - ∠ВОС) : 2 = (180° - 60°) : 2 = 60°.
Следовательно, ΔВОС - равносторонний и ОС = ОВ = ВС = 20.
ответ: 20.
Объяснение: