АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла а = радиус умножить на синус двойного угла а.
Задача: Дан ΔABC — равнобедренный, AC = BC = 10, AB = 16. Найти tg A, sin A.
Проведем высоту CH в ΔABC к стороне AB. Образуется два равных треугольника, т.к. ΔABC равнобедренный. AH = HB = 16/2 = 8.
Р-м ΔACH:
∠AHC = 90°, т.к CH — перпендикуляр к AH (AH∈AB) ⇒ ΔACH — прямоугольный.
Синус угла равен отношению противолежащего катета к гипотенузе.
Найдем катет CH за т. Пифагора:
Тогда синус ∠A будет равен:
Тангенс угла равен отношению противолежащего катета к прилежащему:
ответ: tg A = 0,75; sin A = 0,6.