Введите с клавиатуры пропущенные элементы текста. Дано: Δ A B C , D – середина В С , D P ⊥ А В , D F ⊥ A C , D P = D F . Доказать: Δ A B C – равнобедренный
Две стороны параллелограмма заданы уравнениями 2x-y+5=0 (это прямая АВ) и x-2y+4=0 (это прямая АД), его диагонали пересекаются в точке О(1,4). Найти длины его высот.
Находим координаты точка А как точки пересечения сторон.
2x-y+5=0 |x(-2) -4x+2y-10=0
x-2y+4=0 x-2y+4=0
-3x - 6 = 0,
x(A) = -6/3 = -2,
y(A) = 2x - 5 = 2*(-2) + 5 = 1.
Находим точку С как симметричную точке А относительно точке пересечения диагоналей (это точка О).
х(С) = 2х(О) - х(А) = 2*1 - (-2) = 4,
у(С) = 2у(О) - у(А) = 2*4 - 1 = 7.
Через точку С проводим прямую, параллельную АД.
Выражаем уравнение АД относительно у: у(АД) = (1/2)х + 2.
Угловой коэффициент параллельной прямой сохраняется.
у(ВС) = (1/2)х + в. Подставим координаты точки С.
7 = (1/2)*4 + в, откуда находим в = 7 - 2 = 5.
Уравнение ВС: у = (1/2)х + 5.
Находим координаты точки В кк точки пересечения АВ и ВС.
2х + 5 = (1/2)х + 5, отсюда следует х = 0, у = 5.
Координаты точки Д находим как симметричную точке В относительно точки О: х(Д) = 2*1 - 0 = 2, у(Д) = 2*4 - 5 = 3.
Площадь боковой проверхности призмы равна произведению ее высоты на периметр основания. Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС. Сумма углов при одной стороне параллелограмма равна 180° Следовательно, угол АВС=180°-30°=150° Пусть АВ=4см ВС=4√3 см АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°) косинус тупого угла - число отрицательное. АС²=16+48+32√3*(√3):2=112 АС=√112=4√7 Высота призмы СС1=АС: ctg(60°)=(4√7):1/√3 CC1=4√21 Площадь боковой поверхности данной призмы S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
Две стороны параллелограмма заданы уравнениями 2x-y+5=0 (это прямая АВ) и x-2y+4=0 (это прямая АД), его диагонали пересекаются в точке О(1,4). Найти длины его высот.
Находим координаты точка А как точки пересечения сторон.
2x-y+5=0 |x(-2) -4x+2y-10=0
x-2y+4=0 x-2y+4=0
-3x - 6 = 0,
x(A) = -6/3 = -2,
y(A) = 2x - 5 = 2*(-2) + 5 = 1.
Находим точку С как симметричную точке А относительно точке пересечения диагоналей (это точка О).
х(С) = 2х(О) - х(А) = 2*1 - (-2) = 4,
у(С) = 2у(О) - у(А) = 2*4 - 1 = 7.
Через точку С проводим прямую, параллельную АД.
Выражаем уравнение АД относительно у: у(АД) = (1/2)х + 2.
Угловой коэффициент параллельной прямой сохраняется.
у(ВС) = (1/2)х + в. Подставим координаты точки С.
7 = (1/2)*4 + в, откуда находим в = 7 - 2 = 5.
Уравнение ВС: у = (1/2)х + 5.
Находим координаты точки В кк точки пересечения АВ и ВС.
2х + 5 = (1/2)х + 5, отсюда следует х = 0, у = 5.
Координаты точки Д находим как симметричную точке В относительно точки О: х(Д) = 2*1 - 0 = 2, у(Д) = 2*4 - 5 = 3.
Находим длины сторон.
AB (c) = √((xB-xA)² + (yB-yA)²) = 20 4,472135955
BC (a) = √((xC-xB)² + (yC-yB)²) = 20 4,472135955
CD = √((xD-xC)² + (yD-yC)²) = 20 4,472135955
AD = √((xC-xA)² + (yC-yA)²) = 20 4,472135955 .
Находим длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = 72 8,485281374
BD = √((xD-xB)² + (yD-yB)²) = 8 2,828427125 .
Как видим, это ромб.
Его площадь S = (1/2)*AC*BD = (1/2)*V72*V8 = 12.
Высоты равны h = S/a = 12/V20 = 12/(2V5) = 6V5/5.
Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, угол АВС=180°-30°=150°
Пусть АВ=4см
ВС=4√3 см
АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС²=16+48+32√3*(√3):2=112
АС=√112=4√7
Высота призмы
СС1=АС: ctg(60°)=(4√7):1/√3
CC1=4√21
Площадь боковой поверхности данной призмы
S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²