Пусть данный прямоугольник АВСD, его диагонали пересекаются в точке О.
1. По свойству диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда
АО = ОВ = ОС = OD, треугольник АОВ равнобедренный.
2. По условию величина угла АОВ равна 40°, тогда по теореме о сумме углов треугольника два другие угла ОАВ и ОВА в сумме дают 180° - 40° = 140°.
3. Так как углы при основании равнобедренного треугольника равны, то каждый из них по 140° : 2 = 70°.
4. В соседнем равнобедренном треугольнике ВОС градусная мера угла СВО равна 90° - <АВО = 90° - 70° = 20°. Такой же будет и величина угла ВСО (углы при основании равнобедренного треугольника равны).
5. Рассматривая треугольник АОD, равный треугольнику ВОС (по трём сторонам), и треугольник СОD, равный треугольнику АОВ, получим, что диагональ прямоугольника образует с его сторонами углы, равные 70° и 20°.
20° и 70°.
Объяснение:
Пусть данный прямоугольник АВСD, его диагонали пересекаются в точке О.
1. По свойству диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда
АО = ОВ = ОС = OD, треугольник АОВ равнобедренный.
2. По условию величина угла АОВ равна 40°, тогда по теореме о сумме углов треугольника два другие угла ОАВ и ОВА в сумме дают 180° - 40° = 140°.
3. Так как углы при основании равнобедренного треугольника равны, то каждый из них по 140° : 2 = 70°.
4. В соседнем равнобедренном треугольнике ВОС градусная мера угла СВО равна 90° - <АВО = 90° - 70° = 20°. Такой же будет и величина угла ВСО (углы при основании равнобедренного треугольника равны).
5. Рассматривая треугольник АОD, равный треугольнику ВОС (по трём сторонам), и треугольник СОD, равный треугольнику АОВ, получим, что диагональ прямоугольника образует с его сторонами углы, равные 70° и 20°.
16√3 см²
Объяснение:
Дано: ΔАВС - равнобедренный, ВС=АВ=8 см.
∠А/∠В=1/4.
Найти S(АВС).
Пусть ∠А=∠С=х° т.к. у равнобедренного треугольника углы при основании равны
Тогда ∠В=4х°.
Проведем высоту ВН, которая является и биссектрисой ∠В по свойству высоты равнобедренного треугольника.
Тогда ∠АВН=1/2 ∠В=2х°
Рассмотрим ΔАВН - прямоугольный, ∠А+∠АВН=90° по свойству острых углов прямоугольного треугольника. Составим уравнение:
х+2х=90; 3х=90; х=30. ∠А=30°, тогда ВН=1/2 АВ = 8:2=4 см по свойству катета, лежащего против угла 30 градусов.
По теореме Пифагора АН=(√АВ²-ВН²)=√(64-16)=√48=4√3 см.
АС=2 АН=4√3 * 2 = 8√3 см
S(АВС)=1/2 * АС * ВН = 1/2 * 8√3 * 4 = 16√3 см²