известна диагональ параллелепипеда ac1 dd1-ребро или высота параллелепипеда bc-дина основания надо найти ba-ширину основания.
если провести ac-диагональ основания то получим треугольник acc1 прямоугольный тк как боковые ребра перпендикулярны основаниям в нем известна cc1=dd1=5 и ac1=√38
отсюда по теореме Пифагора находим ac=√38-25=√13. ac является диагональю основания, которое есть прямоугольник. тогда треугольник abc -прямоугольный в уотором известна гипотенуза ac=√13 и катет bc=3 тогда ba=√(13-9)=2
Вписане коло трикутника — це найбільше коло, розташоване в трикутнику, яке дотичне до трьох його сторін. Центр вписаного в трикутник кола називають інцентром. Інцентр також є точкою перетину бісектрис трикутника. Традиційно позначають латинською літерою I.
Центр вписаного кола можна знайти, як точку перетину трьох бісектрис внутрішніх кутів. Центр зовнівписаного кола можна знайти, як точку перетину бісектриси внутрішнього кута і двох бісектрис зовнішніх кутів. З цього випливає, що центр вписаного кола разом з трьома центрами зовнішніх вписаних кіл утворюють ортоцентричну систему.
Блин, не могу вложить
известна диагональ параллелепипеда ac1 dd1-ребро или высота параллелепипеда bc-дина основания надо найти ba-ширину основания.
если провести ac-диагональ основания то получим треугольник acc1 прямоугольный тк как боковые ребра перпендикулярны основаниям в нем известна cc1=dd1=5 и ac1=√38
отсюда по теореме Пифагора находим ac=√38-25=√13. ac является диагональю основания, которое есть прямоугольник. тогда треугольник abc -прямоугольный в уотором известна гипотенуза ac=√13 и катет bc=3 тогда ba=√(13-9)=2
не
Объяснение:
Вписане коло трикутника — це найбільше коло, розташоване в трикутнику, яке дотичне до трьох його сторін. Центр вписаного в трикутник кола називають інцентром. Інцентр також є точкою перетину бісектрис трикутника. Традиційно позначають латинською літерою I.
Центр вписаного кола можна знайти, як точку перетину трьох бісектрис внутрішніх кутів. Центр зовнівписаного кола можна знайти, як точку перетину бісектриси внутрішнього кута і двох бісектрис зовнішніх кутів. З цього випливає, що центр вписаного кола разом з трьома центрами зовнішніх вписаних кіл утворюють ортоцентричну систему.