Высоты, проведённые к боковым сторонам AB и BC равнобедренного треугольника ABC, пересекаются в точке M. Прямая BM пересекает основание AC в точке N. Определи ∡CNM.
Прямой угол меньше тупого угла. Поэтому высота тупоугольного треугольника, проведенная из вершины острого угла, всегда расположена вне самого треугольника и пересекает не саму сторону, к которой проведена, а её продолжение. Об этом важно помнить.
В равнобедренном треугольнике АВС углы при основании АС равны по (180°- ∠АВС):2=(180°-112°):2=34°
АF- биссектриса. Поэтому ∠FAC=∠BAF= ∠ BAC:2=34°:2=17°
Прямой угол меньше тупого угла. Поэтому высота тупоугольного треугольника, проведенная из вершины острого угла, всегда расположена вне самого треугольника и пересекает не саму сторону, к которой проведена, а её продолжение. Об этом важно помнить.
В равнобедренном треугольнике АВС углы при основании АС равны по (180°- ∠АВС):2=(180°-112°):2=34°
АF- биссектриса. Поэтому ∠FAC=∠BAF= ∠ BAC:2=34°:2=17°
Из суммы углов треугольника
∠BFA=180°-∠BAF-∠ABF=180°-17°-112°=51°
Сумма острых углов прямоугольного треугольника 90° ⇒
∠НАF=90°-51°=39°
Объяснение:
Для двух точек пространства A(3;1;-4) и B(2;4;3) координаты точки M(x;y;z) , которая делит отрезок в отношении λ=1/4, выражаются формулами:
Xm=(Xa+λ*Xb)/(1+λ),
Ym=(Ya+λ*Yb)/(1+λ),
Zm=(Za+λ*Zb)/(1+λ).
Найдем эти координаты:
Xm = (3+(1/4)*2)/(1+(1/4)) = (14/4):(5/4) = 14/5 = 2,8;
Ym = (1+(1/4)*4)/(1+(1/4)) = 2:(5/4) = 8/5 = 1,6;
Zm = (-4+(1/4)*3)/(1+(1/4)) = -(13/4):(5/4) = -13/5 = -2,6.
ответ: М(2,8:1,6:-3).Даны точки А(3;0) и точка B(-3;-1). Найти точку C, делящую AB в отношении 1:3.
в.отв:
-С(1;2)
-С(-4;3)
-С(4;1)
-С(0;-