Пусть D — середина ребра SA. По теореме о трёх перпендикулярах прямые SC и АС перпендикулярны. Медиана CD прямоугольного треугольника ACS равна половине гипотенузы AS. Медиана BD прямоугольного треугольника ASВ также равна половине гипотенузы AS. Значит, BD = CD.
б) Пусть F — середина ребра ВС, М — середина ребра SC, тогда FM — средняя линия треугольника CBS. Значит, , прямые FM и BS параллельны, то есть FM — перпендикуляр к плоскости основания пирамиды, поэтому отрезок FM перпендикулярен отрезку АС.
DM — средняя линия треугольника ASC, поэтому , а прямые DM
и АС параллельны, значит отрезок DM перпендикулярен отрезкам FM и ВС, следовательно DM — перпендикуляр к плоскости грани CBS.
Таким образом, угол DFM — это угол между прямой DF и плоскостью грани CBS. По условию задачи BS=AC, поэтому MF = DM, значит,
Смежные углы - соседние углы, образовавшиеся при пересечении двух прямых. Cумма углов треугольника и двух смежных углов равна 180° 1)
a) ∠B=38° как накрест лежащий, аналогично ∠C=85°; ∠A=180-38-85=57°
б) ∠B=50°; ∠A=90° по условию чертежа; ∠C=180-50-90=40°
2)
а) ∠x смежен с соотвественным углом при параллельных прямых a и b т.к. другая прямая образует два угла, равных 90°, с ними; Этот угол равен 65°; значит ∠x=180-65=115°
б) Аналогично x смежен с углом 122°; прямые c и d параллельны по равенству накрест лежащих углов у другой прямой с ними,
x=180-122=58°
3)
∠FRP=30° как накрест лежащий, ∠FRP=∠FPR т.к. RF=FP (У треугольника с двумя равными сторонами углы при них равны); ∠RFP=180-30-30=120°; ∠SFR=180-120=60°; ∠SFT=∠SFR-∠TFR=60-30=30°
Пусть D — середина ребра SA. По теореме о трёх перпендикулярах прямые SC и АС перпендикулярны. Медиана CD прямоугольного треугольника ACS равна половине гипотенузы AS. Медиана BD прямоугольного треугольника ASВ также равна половине гипотенузы AS. Значит, BD = CD.
б) Пусть F — середина ребра ВС, М — середина ребра SC, тогда FM — средняя линия треугольника CBS. Значит, , прямые FM и BS параллельны, то есть FM — перпендикуляр к плоскости основания пирамиды, поэтому отрезок FM перпендикулярен отрезку АС.
DM — средняя линия треугольника ASC, поэтому , а прямые DM
и АС параллельны, значит отрезок DM перпендикулярен отрезкам FM и ВС, следовательно DM — перпендикуляр к плоскости грани CBS.
Таким образом, угол DFM — это угол между прямой DF и плоскостью грани CBS. По условию задачи BS=AC, поэтому MF = DM, значит,
Следовательно, угол DFM = 45°.
ответ: 45°
Объяснение:
Смежные углы - соседние углы, образовавшиеся при пересечении двух прямых.
Cумма углов треугольника и двух смежных углов равна 180°
1)
a) ∠B=38° как накрест лежащий, аналогично ∠C=85°; ∠A=180-38-85=57°
б) ∠B=50°; ∠A=90° по условию чертежа; ∠C=180-50-90=40°
2)
а) ∠x смежен с соотвественным углом при параллельных прямых a и b т.к. другая прямая образует два угла, равных 90°, с ними;
Этот угол равен 65°; значит ∠x=180-65=115°
б) Аналогично x смежен с углом 122°; прямые c и d параллельны по равенству накрест лежащих углов у другой прямой с ними,
x=180-122=58°
3)
∠FRP=30° как накрест лежащий, ∠FRP=∠FPR т.к. RF=FP (У треугольника с двумя равными сторонами углы при них равны);
∠RFP=180-30-30=120°; ∠SFR=180-120=60°;
∠SFT=∠SFR-∠TFR=60-30=30°