. Задана прямая четырёхугольная призма, основаниями которой являются прямоугольники. Длина и ширина каждого прямоугольника равна a и b соответственно. Диагональ призмы равна с.
1) Сделать рисунок
2) Найти высоту призмы
3) Найти периметр основания
4) Найти площадь основания
5) Найти диагональ меньшей боковой грани призмы
6) Найти площадь полной поверхности призмы.
Данные a-6 b-3 c-9
Рассмотрим четырёхугольник ABCD.
По условию задачи имеем:
AB = BC и AD = DC.
Опустим высоту BH треугольника ABC из вершины B на основание AC.
Так как AB = BC, то треугольник ABC - равнобедренный и высота BH является одновременно и медианой, т.е. AH = CH.
Аналогично опустим высоту DG треугольника ADC из вершины D на основание AC.
Так как AD = DC, то треугольник ADC - равнобедренный и высота DG является одновременно медианой, т.е. AG = CG.
Так как AH = CH и AG = CG, то точки H и G совпадают.
BH и DG перпендикулярны AC и точки H и G совпадают.
Следовательно, BH и DG лежат на прямой перпендикулярной AC и BD является диагональю четырехугольника ABCD.
Итак получили, что диагонали AC и ВD перпендикулярны, что и требовалось доказать.
можете не благодарить
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.
Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.
Доказательство:
Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.