1.Точка С - середина отрезка АВ. Найдите координаты точки А, если В(3;4), С(2,1) 2.Найти расстояние между точками А(1; 2) и В( - 3; 4) 3.Определить вид треугольника, вершины которого А(- 3; - 1), В(- 1; 5),С(5; 3)
Объяснение:
1)х(А)=2х(С)-х(В) , х(А)=2*2-3=1 ,
у(А)=2у(С)-у(В) , у(А)=2*1-4=-2 , А(1; -2)
2)АВ=√(4²+2²)=√20=2√5.
3)А(- 3; - 1), В(- 1; 5),С(5; 3)
АВ=√(4+36)=√40 , ВС=√(36+4)=√40 ⇒ΔАВС-равнобедренный , т.к. АВ=ВС
АС=√(64+16)=√80. Проверим т.обратную т. Пифагора АВ²+ВС²=40+40=80 и АС²=80 ⇒ΔАВС-равнобедренный , прямоугольный.
d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.
Теорема, обратная теореме Пифагора : если квадрат длины стороны треугольника равен сумме квадратов длин двух других сторон, то такой треугольник прямоугольный.
Объяснение:
Дано: ΔАВС
АЕ, ВМ, СК - биссектрисы;
∠AOB = ∠ ВОС = 110°.
а) Доказать: ΔАВС - равнобедренный;
б) Найти: ∠А; ∠В; ∠С.
а) Доказательство:
Рассмотрим ΔАОВ и ΔВОС.
∠1=∠2 (условие)
∠AOB = ∠ ВОС (условие)
ВО - общая
⇒ ΔАОВ = ΔВОС (по 2 признаку)
⇒ АВ=ВС (как соответственные элементы)
⇒ ΔАВС - равнобедренный.
б) Решение:
1) ΔАОВ = ΔВОС ⇒АО=ОС (как соответственные элементы)
2) Рассмотрим ΔАОС (равнобедренный, п.1)
⇒ ∠4=∠6 (углы при основании равнобедренного треугольника равны)
∠АОС=360°-(∠AOB + ∠ ВОС)=360°-(110°+110°)=140°
Сумма углов треугольника равна 180°.
⇒ ∠4=∠6=(180°-140°):2=20°
3) ∠3=∠4 (условие)
⇒∠А=∠3+∠4=20°+20°=40°
4) ∠А=∠С=40° (при основании равнобедренного ΔАВС)
∠В=180°-(40°+40°)=100°
1.Точка С - середина отрезка АВ. Найдите координаты точки А, если В(3;4), С(2,1) 2.Найти расстояние между точками А(1; 2) и В( - 3; 4) 3.Определить вид треугольника, вершины которого А(- 3; - 1), В(- 1; 5),С(5; 3)
Объяснение:
1)х(А)=2х(С)-х(В) , х(А)=2*2-3=1 ,
у(А)=2у(С)-у(В) , у(А)=2*1-4=-2 , А(1; -2)
2)АВ=√(4²+2²)=√20=2√5.
3)А(- 3; - 1), В(- 1; 5),С(5; 3)
АВ=√(4+36)=√40 , ВС=√(36+4)=√40 ⇒ΔАВС-равнобедренный , т.к. АВ=ВС
АС=√(64+16)=√80. Проверим т.обратную т. Пифагора АВ²+ВС²=40+40=80 и АС²=80 ⇒ΔАВС-равнобедренный , прямоугольный.
d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.
Теорема, обратная теореме Пифагора : если квадрат длины стороны треугольника равен сумме квадратов длин двух других сторон, то такой треугольник прямоугольный.