Запишите в таблицу имена 5 историческим личностям XIX века и дайте их оценку деятельности историческая личность труды историческое значение блин если чё это история я ошибся
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
т.к. KP=PM то трк равнобедренный значит PH- медиана биссектриса и высота следовательно угол KPH= углу HPM=21 градус. угол PHK=90 градусов
ответ: угол PHK=90 а угол KPH=21 градус
Задание 3
т.к. AO=OD угол BAO= углу CDO (по усл задачи)
угол AOB=углу DOC(смежные)
то треугольники равны по 2 признаку равенства
Задание 4
по условию задачи ML=MN значит трк MNL равнобедренный MD делит основание тр-ка на две равные половины значит MD биссектриса а биссектриса в равнобедренном тр-ке является и медианой и высотой
Задание 5
диаметры в круге равны значит в точке центра делятся пополам и у нас образуются 2 равнобедренных тр-ка MPN и OPK также у этих тр-ков есть вертикальные углы которые равны угол POK= углу MOH тогда треугольник POK равен тр-ку MON по 1 признаку тогда углы
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
задание 1
ответы: 3 4
задание 2
т.к. KP=PM то трк равнобедренный значит PH- медиана биссектриса и высота следовательно угол KPH= углу HPM=21 градус. угол PHK=90 градусов
ответ: угол PHK=90 а угол KPH=21 градус
Задание 3
т.к. AO=OD угол BAO= углу CDO (по усл задачи)
угол AOB=углу DOC(смежные)
то треугольники равны по 2 признаку равенства
Задание 4
по условию задачи ML=MN значит трк MNL равнобедренный MD делит основание тр-ка на две равные половины значит MD биссектриса а биссектриса в равнобедренном тр-ке является и медианой и высотой
Задание 5
диаметры в круге равны значит в точке центра делятся пополам и у нас образуются 2 равнобедренных тр-ка MPN и OPK также у этих тр-ков есть вертикальные углы которые равны угол POK= углу MOH тогда треугольник POK равен тр-ку MON по 1 признаку тогда углы
OMN=OHM=OPK=OKP=40 градусов
Объяснение: