1. Стороны РК и РМ треугольника РМК равны, PН его медиана. Найдите углы PHK и KPH, если ∠МРК = 42°.
Треугольник равнобедренный, поэтому РН - медиана, высота, биссектрисса. =>
РHK = 90 гр., KPH = МРК/2 = 42/2 = 21.
2. Луч КС биссектриса угла DKВ, а отрезок DK равен отрезку BK. Докажите, что ΔKDC = ΔKBC.
Рассмотрим треугольник KDC и треугольник KBС;
DK = BK, ∠DKC = ∠СКВ - по условию.
КС - общая.
ΔKDC = ΔKBС по двум сторонам и углу между ними.
3. На основании NK равнобедренного треугольника NBK отложены отрезки NA = KC. Докажите, что ∠NBA = ∠KBC. рассмотрим треугольники NBA и KBC. угол BNA и угол BKC равны как углы при основании равнобедренного треугольника. BN = BK, NA = KC - по условию. треугольники NBA и KBC равны по двум сторонам и углу между ними. из равенства треугольников следует равенство углов NBA и KBC.
4. В окружности с центром О проведены диаметры АС и хорда ВD, пересекающиеся в точке М, причем ВМ = DМ. ∠ВАС = 35°. Найдите угол ВАD.
Соединим точку О с концами хорды BD. OB = OD как радиусы окружности, значит ОМ - медиана и высота равнобедренного треугольника OBD. То есть, AC⊥BD. Тогда в треугольнике ABD АМ - медиана и высота, ⇒ ΔABD равнобедренный. Значит АМ еще и его биссектриса. ∠BAD = 2·∠BAC = 2·35° = 70°
Образующая конуса наклонена к плоскости основания под углом 30°.
Плоскость сечения образована сторонами, равными образующей, и угол между ними 60°
Плоскость сечения - правильный треугольник.
Треугольник, образованный образующей, радиусом конуса и его высотой - половина правильного треугольника.
Высота - катет этого треугольника и равна половине образующей.
Второй катет равен радиусу основания и, как высота правильного треугольника
( можно и по теореме ПИфагора найти), равен (а√3):2=(L√3):2
(L√3):2=6
L√3=12 см
L=12:√3=12√3:√3*√3=12√3:3=4√3 см
Как уже сказано, плоскость сечения - равносторонний треугольник.
Формула площади равностороннего треугольника
S=(a²√3):4
S=(L√3)²√3:4=S=(16 *3)√3:4=48√3:4
S= 12√3 cм²
1. Стороны РК и РМ треугольника РМК равны, PН его медиана. Найдите углы PHK и KPH, если ∠МРК = 42°.
Треугольник равнобедренный, поэтому РН - медиана, высота, биссектрисса. =>
РHK = 90 гр., KPH = МРК/2 = 42/2 = 21.2. Луч КС биссектриса угла DKВ, а отрезок DK равен отрезку BK. Докажите, что ΔKDC = ΔKBC.
Рассмотрим треугольник KDC и треугольник KBС;
DK = BK, ∠DKC = ∠СКВ - по условию.
КС - общая.
ΔKDC = ΔKBС по двум сторонам и углу между ними.
3. На основании NK равнобедренного треугольника NBK отложены отрезки NA = KC. Докажите, что ∠NBA = ∠KBC.
рассмотрим треугольники NBA и KBC. угол BNA и угол BKC равны как углы при основании равнобедренного треугольника. BN = BK, NA = KC - по условию. треугольники NBA и KBC равны по двум сторонам и углу между ними. из равенства треугольников следует равенство углов NBA и KBC.
4. В окружности с центром О проведены диаметры АС и хорда ВD, пересекающиеся в точке М, причем ВМ = DМ. ∠ВАС = 35°. Найдите угол ВАD.
Соединим точку О с концами хорды BD. OB = OD как радиусы окружности, значит ОМ - медиана и высота равнобедренного треугольника OBD.
То есть, AC⊥BD.
Тогда в треугольнике ABD АМ - медиана и высота, ⇒ ΔABD равнобедренный. Значит АМ еще и его биссектриса.
∠BAD = 2·∠BAC = 2·35° = 70°