1одну 2одну 3 часть прямой с двух сторон ограниченная точками 4часть прямой ограниченная с одной стороны точкой. Либо двумя большими буквами, либо одной маленькой 5два луча исходящие из одной точки. вершина их общее начало, сторона это сами лучи 6обе его стороны лежат на одной прямой 7имеют одинаковую форму и размеры 8 наложить один на другой, чтобы один конец совпал с другим 9 делит его пополам 10 наложить, чтобы одна сторона совмеситлась с другой, а остальные в одну сторону 11 делит угол пополам 12сложить их 13линейка 14сколько градусов он содержит 15сложить их 16меньше 90°, равен 90°, больше 90 но меньше 180° 17хз 18 имеют одну общую сторону,180 19 в точке пересечения образуются прямые углы 20 прямые могут пересечься только в одной точке 21экер,теодолит
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
2одну
3 часть прямой с двух сторон ограниченная точками
4часть прямой ограниченная с одной стороны точкой. Либо двумя большими буквами, либо одной маленькой
5два луча исходящие из одной точки. вершина их общее начало, сторона это сами лучи
6обе его стороны лежат на одной прямой
7имеют одинаковую форму и размеры
8 наложить один на другой, чтобы один конец совпал с другим
9 делит его пополам
10 наложить, чтобы одна сторона совмеситлась с другой, а остальные в одну сторону
11 делит угол пополам
12сложить их
13линейка
14сколько градусов он содержит
15сложить их
16меньше 90°, равен 90°, больше 90 но меньше 180°
17хз
18 имеют одну общую сторону,180
19 в точке пересечения образуются прямые углы
20 прямые могут пересечься только в одной точке
21экер,теодолит
Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см.
Пусть сторона пятиугольника равна х.
Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника.
Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36°
sin36=(х/2)/R,
x=2Rsin36=(16sin36·√3)/3≈5.43см.