Начертим треугольник ABC.C=90°.По условию острый угол равен 45°-> второй угол будет тоже 45°.Следовательно AC=CB.. Рассмотрим треугольник ACH.угол А=45°,угол AHC=90(высота же),уголс ACH=45°. Из чего следует,что CH=AH=9,тоже самое проделываем с треугольником CHB.AH=HB=9=>AB=18. Найдём катеты,которые равны,т.е. АВ^2=AC^2+CB^2,пусть AC=x=CB,=> AB^2=2х^2.18^2=2х^2.324=2x^2,x=корень из 162,S(прямоугольное.треугольника)=1/2произведений катетов=>S=1/2AC*CB=(корень из 162*корень из 162)/2=162/2=81
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
По теореме Пифагора
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60