Точка середины стороны AB возьмем за N, а точку середины стороны AC возьмем за M. Тогда MN средняя линия треугольника. Если опустить высоту АН, то она будет перпендикуляра BC и MN. Пересечение высоты со средней линией прими за К. Тогда АК = КН поскольку MN средняя линия. На продолжении MN опустим перпендикуляры из точек C и B, а точки пересечения обозначим соответственно за Z и X. Тогда ZXCB прямоугольник у которого противолежащие стороны равны. Поскольку КН перпендикулярно CB, то CZ=KH=BX. Тогда вершины равно удалены от прямой.
Рассмотрим треугольники ADC и CBD. ∠DCA=∠CBA (т.к. градусная мера дуги CA равна половине угла DCA почетвертому свойству углов, связанных с окружностью, и на эту же дугу опирается вписанный угол CBA, который тоже равен половине градусной меры дуги, на которую опирается по теореме). ∠CDB - общий для обоих треугольников, следовательно, по признаку подобия, треугольники ADC и CBD - подобны. Следовательно, по определению подобных треугольников запишем: CD/BD=AC/BC=AD/CD AC/BC=AM/MB=10/18 (по первому свойству биссектрисы). Из этих равенств выписываем: AD=CD*10/18 BD=CD*18/10, (BD=AD+AB=AD+18+10=AD+28) AD+28=CD*18/10 CD*10/18+28=CD*18/10 28=CD*18/10-CD*10/18 28=(18*18*CD-10*10*CD)/180 28*180=CD(324-100) CD=28*180/224=180/8=22,5 ответ: CD=22,5
Поскольку КН перпендикулярно CB, то CZ=KH=BX. Тогда вершины равно удалены от прямой.
∠DCA=∠CBA (т.к. градусная мера дуги CA равна половине угла DCA почетвертому свойству углов, связанных с окружностью, и на эту же дугу опирается вписанный угол CBA, который тоже равен половине градусной меры дуги, на которую опирается по теореме).
∠CDB - общий для обоих треугольников, следовательно, по признаку подобия, треугольники ADC и CBD - подобны.
Следовательно, по определению подобных треугольников запишем:
CD/BD=AC/BC=AD/CD
AC/BC=AM/MB=10/18 (по первому свойству биссектрисы).
Из этих равенств выписываем:
AD=CD*10/18
BD=CD*18/10, (BD=AD+AB=AD+18+10=AD+28)
AD+28=CD*18/10
CD*10/18+28=CD*18/10
28=CD*18/10-CD*10/18
28=(18*18*CD-10*10*CD)/180
28*180=CD(324-100)
CD=28*180/224=180/8=22,5
ответ: CD=22,5