В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
OlaCoch
OlaCoch
24.06.2022 12:58 •  Геометрия

знайти похідні

y=3x⁵ + 4

y=(5x²-1)*(3x-4)

y=cosx * sinx

y= x²/2

y=cosx/x² + 4

Показать ответ
Ответ:
Наталья0101
Наталья0101
03.04.2021 19:52
Проведём сечение пирамиды через рёбра BS и ES.
Плоскость этого сечения будет перпендикулярной к заданной плоскости сечения, так как диагональ АС перпендикулярна диагонали ВЕ.
В сечении получим 2 треугольника: BSE и KME.
Ребро BS как гипотенуза равно 6√2.
КМ - это линия наибольшего наклона плоскости.
Отрезок ВК на стороне ВЕ равен половине стороны шестиугольника как катет, лежащий против угла в 30 градусов.
Отношение ВК : ВЕ равно отношению SM : SE (3 / 12 = (3/√2) / (6√2), или 1/4 = 1/4.
Отсюда вывод: треугольники BSE и KME подобны. Отрезок КМ, как и BS, имеет наклон к плоскости основы под углом 45 градусов.

Сечение шестиугольной пирамиды плоскостью, проходящей через диагональ АС под углом 45 ° представляет собой пятиугольник, состоящий из трапеции и треугольника.

У трапеции нижнее основание АС равно
 AC = 2*6*cos30°  = 2*6*(√3/2) = 6√3.
Верхнее основание трапеции определяется из условия пересечения заданной плоскости с рёбрами SD и DF.
В плоскости ВSE верх трапеции - точка Н.
Высоту трапеции КН найдём из треугольника КНF₁, образованного пересечением заданной плоскости и плоскости, проходящей чрез рёбра SD и DF.
В этом треугольнике известно основание КF₁ = 3 + 3 = 6 и угол НКF₁ = 45°. Поэтому он подобен треугольнику F₁BS по двум углам.
Сторона F₁B равна 6 + 3 = 9.
Коэффициент подобия равен 6/9 = 2/3.Тогда КН = (2/3)*BS = (2/3)*6√2 = 4√2. Высота точки Н равна 4√2*sin 45° = 4√2*(√2/2+ = 4.
Верхнее основание трапеции определяется из условия подобия треугольников SH₁H₂ и SDF по высотам от вершины S, равными 2 и 6.
H₁H₂ = DF*(2/6) = 6√3*(1/3) = 2√3.

Тогда S₁ = (1/2)*((6√3)+(2√3))*4√2 = 16√2.

У треугольника ВМЕ высота точки М равна 6*(9/12) = 4,5.
Отсюда высота треугольника H₁МH₂ равна (4,5 - 4)/sin 45° = (1/2)/(√2/2) = (1/2)√2.
Тогда S₂ = (1/2)*(2√3))*((1/2)√2) = (1/2)√6.

Площадь сечения равна:
 S = S₁ + S₂ = (16√6) + (√6/2) = (33√6)/2 =   40.41658.
0,0(0 оценок)
Ответ:
Котик1978
Котик1978
23.07.2020 08:40
Решение.
1. На прямой "а" откладываем последовательно данные нам отрезки АВ=2см и CD=3см (точки В и С совпадают).
2. При циркуля делим отрезок АD пополам, проведя окружности с центрами в точках А и D равными радиусами R=AD) и соединив точки пересечения окружностей.
3. Из полученной точки О радиусом ОА=ОD проводим полуокружность.
4. Из точки В (С) восстанавливаем перпендикуляр к прямой AD.
5. Точка пересечения полуокружности и этого перпендикуляра даст нам вершину Е прямого угла искомого прямоугольного треугольника.
6. Соединив точки А, Е и D получим искомый прямоугольный треугольник АЕD.
Доказательство: <AED=90°, так как опирается на диаметр AD.

Высота, опущенная из прямого угла, делит гипотенузу на отрезки, равные 2см и 3см. постройте этот пря
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота