В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
mrprogemir
mrprogemir
21.03.2021 18:21 •  Информатика

1. Напишите названия фруктов, используя тип данных кортеж. Замените стоящий на 2-м месте фрукт на какое либо число. Какую ошибку показала программа? Сооб щите учителю. 2. Создайте словарь для названий государств и их столиц. Назначьте ключи и значения.

3. Наберите программы в Python и проверьте, является ли

задание истинным или ложным.

al = input ("Введи первое число: ")

a2 = input ("Введи второе число: ") a1 = int (a1)

a2 = int(a2)

bool a = al < a2

print("Второе число больше первого:", bool a)
На Python.
Можете отправить фото сделаное

Показать ответ
Ответ:
koshuba2017
koshuba2017
28.09.2022 12:05
 Древнеегипетская десятичная непозиционная система счисления. Примерно  в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки — иероглифы.        Все остальные числа составлялись из этих ключевых при операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной.!В непозиционных системах счисления количественный эквивалент  каждой  цифры не зависит  от ее положения (места, позиции) в записи числа.         Например, чтобы изобразить 3252 рисовали три цветка лотоса (три тысячи), два свернутых пальмовых листа (две сотни), пять дуг (пять десятков) и два шеста (две единицы). Величина числа не зависела от того, в каком порядке располагались составляющие его знаки: их можно было записывать сверху вниз, справа налево или вперемежку.          Римская система счисления. Примером непозиционной системы, которая  сохранилась  до  наших  дней, может служить система счисления, которая применялась более двух с половиной тысяч лет назад в Древнем Риме. В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Сentum — сто, Demimille — половина тысячи,  Мille — тысяча).         Чтобы записать число, римляне разлагали его на сумму тысяч, полутысяч, сотен, полусотен, десятков, пятков, единиц. Например, десятичное число 28 представляется следующим образом:XXVIII=10+10+5+1+1+1 (три десятка, пяток, три единицы).        Для записи промежуточных чисел римляне использовали не только сложение, но и вычитание. При этом применялось следующее правило: каждый меньший знак, поставленный справа от большего, прибавляется к  его  значению,  а  каждый меньший знак,  поставленный слева от большего, вычитается из него.        Например, IX — обозначает 9, XI — обозначает 11.        Десятичное число 28 представляется следующим образом:XXVIII=10+10+5+1+1+1,а десятичное число 99 имеет вот такое представление:XCIХ=-10+100-1+10.          Римскими цифрами  пользовались  очень долго.  Еще 200 лет назад в деловых бумагах числа должны были обозначаться римскими цифрами  (считалось, что обычные арабские цифры легко подделать). Римская система  счисления сегодня используется,  в основном,  для наименования знаменательных дат, томов, разделов и глав в книгах.        Алфавитные системы счисления. Более совершенными непозиционными системами счисления были алфавитные системы. К числу таких систем счисления относились греческая, славянская, финикийская и другие. В них числа от 1 до 9, целые количества десятков (от 10 до 90) и целые количества сотен (от 100 до 900) обозначались буквами алфавита.        В алфавитной системе счисления Древней Греции числа 1, 2, ..., 9 обозначались первыми девятью буквами греческого алфавита, например a = 1, b = 2, g = 3  и т.д. Для обозначения чисел 10, 20, ..., 90 применялись следующие 9 букв (i = 10, k = 20, l = 30, m = 40  и т.д.),  а для обозначения чисел 100, 200, ..., 900 — последние 9 букв (r = 100, s = 200, t = 300 и т.д.). Например, число 141 обозначалось rma.         У славянских народов числовые значения букв установились в порядке славянского алфавита, который использовал сначала глаголицу, а затем кириллицу. Древнерусская алфавитная система счисления        В России славянская нумерация сохранилась до конца XVII века. При Петре I возобладала так называемая арабская нумерация, которой мы пользуемся и сейчас. Славянская нумерация сохранилась только в богослужебных книгах.        Непозиционные системы счисления имеют ряд существенных недостатков:1. Существует постоянная  потребность введения новых знаков для записи больших чисел.2. Невозможно представлять дробные и отрицательные числа.3. Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения. 
0,0(0 оценок)
Ответ:
Amilina11
Amilina11
04.01.2021 18:50
Язык не указан, решение приводится на языке Pascal.
Поскольку в стандарте языка не определена функция арккосинуса, используем для её вычисления следующую формулу:
\displaystyle \arccos(x)=\arctan \left(\frac{\sqrt{1-x^2}}{x}\right)

const
  m=10;
  n=6;
var
  a:array[1..m,1..n] of real;
  i,j,nn,np:integer;
  t:real;
begin
  Randomize;
  Writeln('Исходный массив');
  for i:=1 to m do
  begin
    for j:=1 to n do
    begin
      a[i,j]:=100*Random-50;
      Write(a[i,j]:4:0)
    end;
    Writeln
  end;
  Writeln('Преобразованный массив');
  for i:=1 to m do
  begin
    for j:=1 to n do
    begin
      t:=i/(i+j);
      a[i,j]:=a[i,j]*arctan(sqrt(1-sqr(t))/t);
      Write(a[i,j]:8:3)
    end;
    Writeln
  end;
  Writeln('Количество положительных и отрицательных по столбцам');
  for j:=1 to n do
  begin
    nn:=0; np:=0;
    for i:=1 to m do
      if a[i,j]>0 then Inc(np)
      else if a[i,j]<0 then Inc(nn);
    Writeln(np,nn:5)
  end
end.

Тестовое решение:
Исходный массив
 -11 -10 -15 -13  -4 -23
   5  -9 -26  42 -10 -50
  39 -44 -11 -23 -49  29
  10  28 -19  -3  11 -33
 -43  38   9 -17 -39 -10
  28 -14  37  31  28 -45
 -36  -9  43   1   5 -27
   9  13  11  27 -26 -47
 -12 -47  18  -2   1 -42
  -6  42  30 -32 -20   8
Преобразованный массив
 -12.034 -12.248 -19.972 -17.532  -5.364 -32.661
   4.253  -9.774 -29.745  51.166 -13.367 -65.437
  28.372 -40.514 -11.382 -26.380 -58.461  36.054
   6.581  23.311 -18.115  -3.547  11.668 -37.943
 -25.184  29.245   7.803 -16.734 -41.213 -10.573
  14.960  -9.929  31.504  28.946  27.517 -46.913
 -18.219  -5.980  33.942   1.053   4.692 -27.179
   4.153   8.483   8.413  22.468 -23.865 -45.133
  -5.524 -28.630  12.763  -1.270   0.634 -38.674
  -2.612  24.538  20.476 -25.133 -16.656   7.570
Количество положительных и отрицательных по столбцам
5    5
4    6
6    4
4    6
4    6
2    8
0,0(0 оценок)
Популярные вопросы: Информатика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота