В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
масяня155
масяня155
19.02.2021 05:12 •  Информатика

Постройте таблицу истинности a& bvc

Показать ответ
Ответ:
Akmosh2003
Akmosh2003
28.04.2022 15:16

55:5=11

365:11≈33(34) берём "34", чтобы перехлестнуть 365.

Так как 11-ый член является замыкающим (перехлёстывающим 365), тогда смотрим по ближайшим:

34*10=340 (340+34=374) - подходит, но это не максимум!

365 mod 10= 36, а это значит, что последующий член будет больше 365, а именно 395.

В задании сказано, что d должно быть максимальным, а "34" - это допустимое, но не максимально число, удовлетворяющее условию, даже минимальное (по результату).

Проверка:

34*11=374, значит, когда на экране выведется s:=340, n:=50, то, зайдя по следующему циклу, получится, что s:= 374, n:=55. На следующий цикл программа не пойдёт.

ответ: d=34. 

0,0(0 оценок)
Ответ:
MiladKowalska
MiladKowalska
18.01.2021 18:13

Из комбинаторики известно, что, в случае непозиционного кода, количество комбинаций (кодов) n-разрядного кода является числом сочетаний с повторениями, равно биномиальному коэффициенту:

{\displaystyle {n+k-1 \choose k}=(-1)^{k}{-n \choose k}={\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}}{n+k-1 \choose k}=(-1)^{k}{-n \choose k}={\frac  {\left(n+k-1\right)!}{k!\left(n-1\right)!}}, [возможных состояний (кодов)], где:

{\displaystyle n}n — количество элементов в данном множестве различных элементов (количество возможных состояний, цифр, кодов в разряде),

{\displaystyle k}k — количество элементов в наборе (количество разрядов).

В двоичной системе кодирования (n=2) количество возможных состояний (кодов) равно :

{\displaystyle {\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}={\frac {\left(2+k-1\right)!}{k!\left(2-1\right)!}}={\frac {\left(k+1\right)!}{k!1!}}=k+1}\frac{\left(n+k-1\right)!}{k!\left(n-1\right)!}=\frac{\left(2+k-1\right)!}{k!\left(2-1\right)!}=\frac{\left(k+1\right)!}{k!1!}=k+1, [возможных состояний (кодов)], то есть

описывается линейной функцией:

{\displaystyle N_{kp}(k)=k+1}N_{{kp}}(k)=k+1, [возможных состояний (кодов)], где

{\displaystyle k}k — количество двоичных разрядов.

Например, в одном 8-битном байте (k=8) количество возможных состояний (кодов) равно:

{\displaystyle N_{kp}(k)=k+1=8+1=9}N_{{kp}}(k)=k+1=8+1=9, [возможных состояний (кодов)].

В случае позиционного кода, число комбинаций (кодов) k-разрядного двоичного кода равно числу размещений с повторениями:

{\displaystyle N_{p}(k)={\bar {A}}(2,k)={\bar {A}}_{2}^{k}=2^{k}}N_{{p}}(k)={\bar  {A}}(2,k)={\bar  {A}}_{2}^{k}=2^{k}, где

{\displaystyle \ k}\ k — число разрядов двоичного кода.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Информатика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота