Здесь есть проверить, либо из восьмеричную систему счисления перевести в двоичную, либо из двоичную в восьмеричную, и тогда легче смотреть равны ли. И так первый это перевод из восьмеричную в двоичную: 2 - 010, 3 - 011 и 5 - 101 = 010010101011011 но первое число 0 не входи поэтому убираем и получаем 10010101011011. Второй это перевод из двоичную в восьмеричную: начинаем с конца - 011 это число 3(восьмеричная), 101 - 5 и 010 - 2, но учитывайте если остались числа 10 то в начале вписываем число 0 получим 010, в итоге 22533.
Задача 5. “Кузнечик” В одной стране жил-был волшебный кузнечик, умеющий прыгать на любое расстояние. А ко- гда он изучил тему «числовые последовательности», то решил прыгать по дороге с нумерованны- ми клетками по придуманному им правилу: 1 2 4 7 11 16 22 29 и так далее, дальше продолжи- те сами. А другой кузнечик решил подкараулить его в какой-нибудь клетке N, чтобы не дать уска- кать в бесконечность ему, предложите алгоритм, проверяющий, попадет ли первый кузнечик в клетку N? Решение: Можно догадаться, что каждое n-ное число bn = bn-1 + n – 1, где b1 = 1. Можно также догадаться, что каждое число нашей прогрессии bn = 1 + 1 + 2 + 3 + … + n – 1 = 1 + Sn , где Sn – это сумма арифметической прогрессии с a1=0 и d=1. И по формуле прогрессии получаем: bn = 1 + n(n-1)/2. Остается проверить, равно ли введенное N какому-нибудь bn. Решаем уравнение: N = 1 + n(n-1)/2, квадратное уравнение: n2 – n + 2 – 2N = 0, D = 1 – 4(2-2N) = 8N – 7, n = (1+sqrt(8N-7))/2 – берем только положительный ответ. Получился алгоритм: Подставляем N в формулу для n и если n – целое, то кузнечик попадет в клетку с номером N. Вопрос только, как проверить, целое ли n. Для этого проверяем, достаточно ли мало отклонение его от его округле- ния: если abs( n – round( n ) ) < 0,000000000000001, то n – скорее всего целое. По крайней мере с точностью до 0,000000000000001.
И так первый это перевод из восьмеричную в двоичную: 2 - 010, 3 - 011 и 5 - 101 = 010010101011011 но первое число 0 не входи поэтому убираем и получаем 10010101011011.
Второй это перевод из двоичную в восьмеричную: начинаем с конца - 011 это число 3(восьмеричная), 101 - 5 и 010 - 2, но учитывайте если остались числа 10 то в начале вписываем число 0 получим 010, в итоге 22533.