1 Рис. 6.58 1105. Обозначьте в тетради точки А и А, так, как указано на рисунке 6.59 (а, б, в). Начертите прямую к так, чтобы точки А и А, были симметричными. 103
Один асфальтоукладчик может выполнить задание на 15 дней быстрее, чем другой. После того как первый асфальтоукладчик проработал 10 дней, его сменил другой и закончил работу за 30 дней. За сколько дней могут выполнить всю работу два асфальтоукладчика, работая одновременно.
Пусть объем работ равен 1. тогда производительность первого асфальтоукладчика 1/х. Второго 1/(х+15)
10*1/х+30*1/(х+15)=1
10/х+30/(х+15)=1
10х+150+30х=х*(х+15)
40х+150=х2+15х
х2-25х-150=0
х=30 дней
За 30 дней 1 асфальтоукладчик выполнит задание. Второй за 30+15=45 дней.
. Изобразите тетраэдр KLMN. а) Постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину А ребра MN. б) Докажите, что плоскость, проходящая через середины Е, О и F отрезков LM, МА и МК, параллельна плоскости LKA. Найдите площадь треугольника EOF, если площадь треугольника LKA равна 24 см2.
а) Проведем
- искомое сечение.
б) В ΔAMK: OF - средняя линия, OF || AK; в ΔMLK: EF - средняя линия, EF || KL.
По теореме п. 10
Площади подобных треугольников
как углы с соответственно параллельными и одинаково направленными сторонами;
поэтому
относятся как квадраты, значит, соответствующих линейных размеров.
ПОДСТАВЬ СЮДА СВОИ ЦИФРЫ И РЕШИШЬ
Один асфальтоукладчик может выполнить задание на 15 дней быстрее, чем другой. После того как первый асфальтоукладчик проработал 10 дней, его сменил другой и закончил работу за 30 дней. За сколько дней могут выполнить всю работу два асфальтоукладчика, работая одновременно.
Пусть объем работ равен 1. тогда производительность первого асфальтоукладчика 1/х. Второго 1/(х+15)
10*1/х+30*1/(х+15)=1
10/х+30/(х+15)=1
10х+150+30х=х*(х+15)
40х+150=х2+15х
х2-25х-150=0
х=30 дней
За 30 дней 1 асфальтоукладчик выполнит задание. Второй за 30+15=45 дней.
Далее
1/30*t+1/45*t=2
1/18t=2
t=36
Через 36 дней
. Изобразите тетраэдр KLMN. а) Постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину А ребра MN. б) Докажите, что плоскость, проходящая через середины Е, О и F отрезков LM, МА и МК, параллельна плоскости LKA. Найдите площадь треугольника EOF, если площадь треугольника LKA равна 24 см2.
а) Проведем
- искомое сечение.
б) В ΔAMK: OF - средняя линия, OF || AK; в ΔMLK: EF - средняя линия, EF || KL.
По теореме п. 10
Площади подобных треугольников
как углы с соответственно параллельными и одинаково направленными сторонами;
поэтому
относятся как квадраты, значит, соответствующих линейных размеров.