4 Прочитай текст. Какой это текст (художественный или нехудо- жественный)? Определи его тип (повествование, описание, рассуждение). Орнамент – это узор, который строится путём повторе- ния элементов. Осн...вным источ(?)ником создания ...рнамента всегда была пр...рода. На шкурках змей, гусениц, зв...рей, на крыл(?)ях бабоч...к, на р...стениях и пл...дах пр...рода Н...р...совала разнообразные узоры. Глядя на них, человек научился составлять бесконечное множество узоров, которые теперь украшают разные пред- меты, здания, произведения искусства, предметы быта. (Омирбекова М.Ш. Энциклопедия «Казахские орнаменты». Алматыкітап, 2005) секса • Спиши вторую часть текста и составь словосочетания с име- нами существительными. Найди главное и зависимое слова. Определи род имён существительных. определить род и составить СЛОВОСОЧИТАНИЯ
138π см²
Пошаговое объяснение:
Построим равнобедренную трапецию ABCD с высотой CF (см. Рис. 1).
Согласно условию: AD=18 см, BC=10 см, CF=3 см. Для дальнейших вычислений нам понадобится длина боковой стороны трапеции AB=CD.
Т.к. трапеция равнобедренная, то FD = (AD-BC):2 = 4 см.
ΔCDF - прямоугольный с катетами CF=3 см, FD=4 см, значит он египетский, и его гипотенуза CD=5 см.
При вращении такой трапеции вокруг короткого основания образуется цилиндр с равными осевыми конусообразными выемками с обеих сторон (См. рис. 1.2, 2.1, 2.2). Радиус такого цилиндра равен высоте трапеции R=CF=3 см, а высота цилиндра равна длинному основанию трапеции H=AD=18 см.
Образующей конуса-выемки является боковая сторона трапеции L=CD=5 см, радиус равен радиусу цилиндра R=3 см.
Искомая площадь полной поверхности фигуры вращения состоит из площади боковой поверхности цилиндра и двух боковых поверхностей конусов-выемок.
Площадь боковой поверхности цилиндра: .
Площадь боковой поверхности конуса-выемки:
Площадь полной поверхности:
В правильной четырехугольной призме площадь основания равна 10, а боковое ребро 3√10. Найдите расстояние между стороной основания и диагональю призмы, не пересекающейся с ней.
––––––––––––––––––––––––––––
На рисунке, данном в приложении, сторона основания и диагональ призмы, не пересекающаяся с ней – прямые АД и А1С. Они скрещивающиеся.
Определение: Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.
Через диагональ призмы А1С и сторону ВС проведем плоскость ВСД1А1. Плоскость содержит ВС║ АД, значит, она параллельна АД ( по т. о параллельности прямой и плоскости).
Длина перпендикуляра, опущенного на эту плоскость из любой точки на прямой АД – есть искомое расстояние.
Отметим на АД точку М.
Проведем отрезок МК║ДД1 и отрезок МН║ ДС. Они будут взаимно перпендикулярны. Соединив К и Н, получим прямоугольный треугольник КМН, в котором гипотенуза КН лежит в плоскости ВА1Д1Д. Следовательно, высота МО этого треугольника – расстояние между АД и плоскостью, содержащей диагональ призмы.
По т.Пифагора найдем КН.
КН=СД1, МН=ДС, КМ=ДД1
КН=√(KM²+MH²)=√190
S ∆ CДД1=СД•ДД1:2=10√10):2
S ∆ CДД1=МО•КН:2
МО=2 S ∆СДД1:КН=10√10):√190=10/√19 - искомое расстояние.
Тот же результат получим, если из прямого угла Д грани ДСС1Д1 опустим перпендикуляр на СД1 или из А – на ВА1, т.к., если прямая параллельна плоскости, то все точки этой прямой равноудалены от той плоскости.