(Построить графики не смогу, но закон распределения и функцию распределения найду). Пусть случайная величина (далее - СВ) х - число неточных приборов среди трёх взятых. Очевидно, что эта СВ может принимать значения 0,1,2,3. Вычислим вероятности этих значений: р(0)=(14/20)³=2744/8000=0,343, р(1)=(6/20)¹*(14/20)²*3!/(1!*(3-1)!)=1176/8000*6/2=3528/8000=0,441, р(2)=(6/20)²*(14/20)¹*3!/(2!*(3-2)!)=1512/8000=0,189, р(3)=(6/20)³=216/8000=0,027. (Проверка: 0,343+0,441+0,189+0,027=1, так что вероятности найдены верно) Таким образом, мы нашли закон распределения данной СВ, который можно записать в виде таблицы: Xi 0 1 2 3 Pi 0,343 0,441 0,189 0,027 По найденным данным можно построить многоугольник распределения и функцию распределения. Математическое ожидание М=∑Xi*Pi=0*0,343+1*0,441+2*0,189+3*0,027=0,9 Дисперсия D=∑(Xi-M)²*Pi=(0-0,9)²*0,343+(1-0,9)²*0,441+(2-0,9)²*0,189+(3-0,9)²*0,027=0,27783+0,00441+0,22869+0,11907=0,63.удачи
√18.
Пошаговое объяснение:
Учитывая знаки тригонометрических функции в координатных четвертях, а также, значения синуса и косинуса для углов 0; π/3; π/4; π/6; π/2; π, вычислим:
а) sin (- π/4) + cos π/3 + cos (- π/6) = - √2/2 +1/2 - √3/2 = (-√2 + 1 - √3)/2.
б) sin (- 3П/2) - cos (-П ) + sin ( - 3П/2) = 1 – 1 + 0 = 0 ,
в) 2 sin 0 + 3 sin П/2 - 4 sin П/2 = 0 + 3 * 1 - 4 * 1= -1.
г) sin (- П/2) - cos (- П) + sin (- 3П/2) = -1 + 1 – 1 = -1 ,
д) cos П/6 * cos П/4 * cos П/3 * cos П/2 * cos 2П/3 = √3 * √2 * 1/2 * 0 * (-1/2) = 0 ,
е) sin П/6 * sin П/4 * sin П/3 * sin П/2 * sin 2П/3 = 1/2 * √2/2 * √3/2 * 1 * √3/2 =
= (1 * √2 * √3 * 2 * √3)/2 = (2 * √2 * √3 * √3)/2 = √18.