79. Пользуясь транспортиром, найдите градусные меры уг- лов, изображённых на рисунке 55. Определите вид ка- ждого угла Рис. 55 E M T Н. F B. K 2 А R М. D
Сейчас х лет одной сестре, у лет другой сестре. Пять лет назад одной сестре было (х - 5) лет, а другой (у - 5) лет, и одна из них была в 2 раза старше.
х + у = 16 х - 5 = 2 * (у - 5)
Находим х из первого уравнения системы х = 16 - у и подставляем его значение во второе уравнение (16 - у) - 5 = 2 * (у - 5) 16 - у - 5 = 2у - 10 16 - 5 + 10 = 2у + у 21 = 3у у = 21 : 3 у = 7 (лет) - одной сестре
Подставим значение у в первое уравнение системы х + 7 = 16 х = 16 - 7 х = 9 (лет) - другой сестре
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
х + у = 16
х - 5 = 2 * (у - 5)
Находим х из первого уравнения системы
х = 16 - у
и подставляем его значение во второе уравнение
(16 - у) - 5 = 2 * (у - 5)
16 - у - 5 = 2у - 10
16 - 5 + 10 = 2у + у
21 = 3у
у = 21 : 3
у = 7 (лет) - одной сестре
Подставим значение у в первое уравнение системы
х + 7 = 16
х = 16 - 7
х = 9 (лет) - другой сестре
ответ: 7 лет одной сестре и 9 лет другой.
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Пошаговое объяснение:
Вот там написал