Существует выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
Пошаговое объяснение:
Укажите сколькими можно выбрать 9 клеток на доске
9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
Вспомним как выглядит доска судоку ( рис. 1 во вложении ).
Вся задача сводится к тому , что надо определить сколькими можно разместить цифру в одной клетке , в каждом квадратике 3 х 3 соблюдая условие , что в каждом столбце и каждой строчке будет только одна цифра .
Берем первый сверху ряд .
Пусть первая цифра будет стоять в левом верхнем квадрате . В квадрате 9 клеток , надо выбрать одну , значит у нас будет
выбрать эту клетку .
В следующем квадрате 3 х 3 одна строка у нас уже занята , значит 3 клетки мы не можем выбрать , остается 9-3 = 6 клеточек для выбора . Получаем :
выбрать одну клетку .
Переходим в следующий квадрат 3 х 3 . В нем у нас уже две строки заняты , значит мы не можем выбрать :
3 * 2 = 6 клеток , остается
9 - 6 = 3 клетки для выбора . Получаем :
выбрать одну клетку.
Для наглядности изобразим это на рисунке 2 ( во вложении).
Берем второй ряд.
В первом слева квадрате ( рис. 3 во вложении) у нас 3 клетки заняты , значит остается : 9 - 3 = 6 клеток для выбора . Получаем :
выбрать 1 клетку
В следующем квадрате заняты уже 5 клеток ( рис. 3) , остается :
9 - 5 = 4 клетки для выбора . Получаем :
выбрать 1 клетку
В последнем квадрате занято 7 клеток , остается :
9 - 7 = 2 клетки для выбора . Получаем :
выбрать 1 клетку .
Отметим это все на нашем рисунке 3 ( во вложении) .
Переходим к последнему ряду , третьему .
В первом квадрате занято 6 клеток , остается 9 - 6 = 3 клетки для выбора . Получаем :
выбрать 1 клетку
Во втором квадрате занято 7 клеток, остается : 9 - 7 = 2 клетки для выбора и получаем :
выбрать 1 клетку.
В третьем , последнем квадрате нашей доски , свободный остается 1 квадрат , получаем :
1 * 1 = 1 единственный выбора клетки.
Отмечаем на рисунке 4 ( во вложении)
Мы выбрали 9 клеток , соблюдая условие задачи.
Теперь найдем сколькими можно выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
По правилу умножения :
.
Существует выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
Клубника весит 220 г;
голубика весит 191 г;
ежевика весит 145 г.
Объяснение:
По условию задачи, отношение массы синего пластика, нужного для создание ежевики, к массе красного равно 3 : 2.
Обозначим коэффициент пропорциональности буквой k.
Тогда на ежевику ушло 3k синего пластика и 2k красного.
Отсюда, масса ежевики составляет 3k + 2k (г).
Всего синего пластика было 278 г, значит, из них ушло на голубику 278 - 3k (г).
Аналогично, на клубнику ушло 278 - 2k красного пластика.
Так как ежевика весит на 75 г меньше, чем клубника, то можем составить и решить такое уравнение:
3k + 2k + 75 = 278 - 2k;
3k + 2k + 2k = 278 - 75;
7k = 203;
k = 203 : 7;
k = 29.
В таком случае, масса ежевики равна 3 ∙ 29 + 2 ∙ 29 = 145 (г).
Масса клубники (которая на 75 г больше, чем масса ежевики) равна 145 + 75 = 220 (г).
Масса голубики равна 278 - 3 ∙ 29 = 191 (г).
Существует выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
Пошаговое объяснение:
Укажите сколькими можно выбрать 9 клеток на доске
9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
Вспомним как выглядит доска судоку ( рис. 1 во вложении ).
Вся задача сводится к тому , что надо определить сколькими можно разместить цифру в одной клетке , в каждом квадратике 3 х 3 соблюдая условие , что в каждом столбце и каждой строчке будет только одна цифра .
Берем первый сверху ряд .
Пусть первая цифра будет стоять в левом верхнем квадрате . В квадрате 9 клеток , надо выбрать одну , значит у нас будет
выбрать эту клетку .
В следующем квадрате 3 х 3 одна строка у нас уже занята , значит 3 клетки мы не можем выбрать , остается 9-3 = 6 клеточек для выбора . Получаем :
выбрать одну клетку .
Переходим в следующий квадрат 3 х 3 . В нем у нас уже две строки заняты , значит мы не можем выбрать :
3 * 2 = 6 клеток , остается
9 - 6 = 3 клетки для выбора . Получаем :
выбрать одну клетку.
Для наглядности изобразим это на рисунке 2 ( во вложении).
Берем второй ряд.
В первом слева квадрате ( рис. 3 во вложении) у нас 3 клетки заняты , значит остается : 9 - 3 = 6 клеток для выбора . Получаем :
выбрать 1 клетку
В следующем квадрате заняты уже 5 клеток ( рис. 3) , остается :
9 - 5 = 4 клетки для выбора . Получаем :
выбрать 1 клетку
В последнем квадрате занято 7 клеток , остается :
9 - 7 = 2 клетки для выбора . Получаем :
выбрать 1 клетку .
Отметим это все на нашем рисунке 3 ( во вложении) .
Переходим к последнему ряду , третьему .
В первом квадрате занято 6 клеток , остается 9 - 6 = 3 клетки для выбора . Получаем :
выбрать 1 клетку
Во втором квадрате занято 7 клеток, остается : 9 - 7 = 2 клетки для выбора и получаем :
выбрать 1 клетку.
В третьем , последнем квадрате нашей доски , свободный остается 1 квадрат , получаем :
1 * 1 = 1 единственный выбора клетки.
Отмечаем на рисунке 4 ( во вложении)
Мы выбрали 9 клеток , соблюдая условие задачи.
Теперь найдем сколькими можно выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
По правилу умножения :
.
Существует выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.