Даны последовательности
для каждой последовательности
найдите предел при
n стремящийся к бесконечности
и укажите, является ли последовательность сходящейся (расходящейся), бесконечно малой (бесконечно большой); ни той, ни
другой, ограниченной (неограниченной).
Для начала поговорим о "строении" обыкновенных дробей. Возьмем для примера дробь . Сама дробь показывает, что мы делим целое(единицу) на 7 частей и берем две. 2 - числитель, 7 - знаменатель, а черточка обозначает деление.
Сокращение:
Вообще, у обыкновенных дробей есть основное свойство - при делении или умножении числителя и знаменателя на одно и тоже число дробь не изменится(ну визуально изменится). Для примера возьмем . Разделим 1 на 2(вспоминаем, что черточка обозначает деление). Получится 0,5. А теперь умножим числитель и знаменатель, предположим, на 3. Получится . Разделите 3 на 6. Получится тоже 0,5. Понятно? Это пригодится в изучении обыкновенных дробей.
Приступим к сокращению.
Оно применяется, тогда, когда можно сделать дробь с максимально наименьшим числителем и знаменателем. Но в дроби не должно быть десятичных дробей(0,5 или 0,6, например, то есть цифр с запятыми, и да, это только при сокращении, бывают пропорции с десятичными дробями в обыкновенных). То есть возьмем . Можно ли ее сократить? Есть ли общие делители у 2 и 7? Или они взаимно простые? Конечно, они взаимно простые. Значит и сократить нельзя. То есть для сокращении обыкновенных дробей нужны делители знаменателя и числителя. - сократите. Получилось? Думаем над общими делителями. 6 и 15 делятся на 3. Делим. Получится 2/5. Ну а дальше делителей нет. Значит все. Думаю, насчет сокращения все понятно.
Умножение обыкновенных дробей
Умножьте числитель на числитель и знаменатель на знаменатель. Если же умножаем на целое число или целое число на дробь, то умножаем целое на числитель, а знаменатель оставляем. И не забываем сокращать результат. Также можно делать интересную вещь. Представим умножение . Можно умножать числитель на числитель и знаменатель на знаменатель сразу. НО,почему бы не сократить 6 и 2, 10 и 20. Это делать можно. Можно сокращать числа, как дроби, если одно число в числителе, другое в знаменателе. То есть можно получить 3 и 1, 1 и 2. Получим . А дальше легко. 3*2=6. 1*1=1. Получим результат 6/1. Или 6(да, еще один пункт про сокращение. Просто разделите числитель на знаменатель. Получите 6. И вообще, если знаменатель равен 1, его можно выкидывать). Предположим умножение на целое число. Пусть будет . Тут можно сократить 4 и 2(можно сокращать целые числа и числители). Получим 1/5 *2. Умножаем числитель на целое, знаменатель оставляем. 2/5. Если встретилось число по типу - это смешанное число. Нужно из него получить дробь. Умножаем знаменатель(9( на целое(2) и прибавляем числитель(2). Получим .
Деление обыкновенных дробей
Есть понятие обратных дробей. Это перевернутая дробь. То есть на место знаменателя стает значение числителя, а на место числителя значение знаменателя. То есть у дроби обратной будет . У числа 2 обратным будет (ведь 2 - это ).Если смешанное число, то переводим в дробь(выше описывал). Чтобы делить дроби нужно делитель сделать обратной дробью, заменить знак деления на знак умножения и умножать. Приведем пример . Обратное число двух - 1/2. Заменяем деление на умножение. Получим . Умножаем. 1*1=1, 3*2=6. Получим 1/6. Или приведем пример . Да, есть соблазн сократить 45 и 45. Но делать это пока нельзя. На данном этапе вообще сокращать нельзя. Сначала нужно преобразовать деление в умножение. Получим . Теперь сокращаем. Можно сократить 81 и 45(делятся на 9) и 35 и 45(делятся на 5). Сокращаем. Получаем . Сократить нельзя? Можно. 9/9 - 1. Получаем 7/5 умножить на 1. Получаем 7/5. Но эту дробь можно перевести в смешанное число. Сколько раз 5 помещается в 7? один раз. Значит тут есть целое(1). Вычитаем теперь это целое, то есть 5/5 из 7/5. Получаем 2/5. Значит ответ в нашем делении - . А тут даже можно перевести в неправильную дробь) Разделите 2 на 5. Получим 0,4. И в правду, 2/5=0,4. Значит можно и ответить 1,4. Но переводить в десятичную дробь совсем не обязательно.
P.s в моих объяснениях есть числа по типу 2/1 и 3/6 - это те же самые дроби, просто в интернете их пишут так, т.е вышеприведенные дроби равносильны /
Надеюсь, что теперь уж точно все понятно, и что эти 40 минут я потерял не просто так(хотя сейчас на знаниях в это время суток мало вопросов для меня)
Пошаговое объяснение:
Вспомним такую известную нам операцию как сложение нескольких одинаковых слагаемых. Например, 5 + 5 + 5. Такую запись математик заменит более короткой:
5 ∙ 3. Или 7 + 7 + 7 + 7 + 7 + 7 запишет как 7 ∙ 6
А писать а + а + а + …+ а (где n слагаемых а) – вообще не будет, а напишет а ∙ n. Точно так же математик не будет длинно писать произведение нескольких одинаковых множителей. Произведение 2 ∙ 2 ∙ 2 запишется как 23 (2 в третьей степени). А произведение 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 как 46(4 в шестой степени). Но если необходимо, то можно короткую запись заменить более длинной. Например, 74 (7 в четвёртой степени) записать как 7∙7∙7∙7. Теперь дадим определение.
Под записью аn (где n – натуральное число) понимают произведение n множителей, каждый из которых равен а.
Саму запись аn называют степенью числа а, число а – основанием степени, число n – показателем степени.
Запись аn можно прочитать как «а в энной степени» или как «а в степени эн». Записи а2 (а во второй степени) можно прочитать как « а в квадрате», а запись а3 ( а в третьей степени) можно прочитать как «а в кубе». Ещё один особый случай – это степень с показателем 1. Здесь необходимо отметить следующее:
Степенью числа а с показателем 1 называют само это число. Т.е. а1 = а.
Любая степень числа 1 равна 1.
т.е. 1n = 1. Например, 15 = 1; 145 = 1.
Любая степень числа 0 равна 0. Т.е. 0n = 0. Например, 07 = 0; 021 = 0.
А теперь давайте рассмотрим несколько степеней с основанием 10.
103 = 1000
104 = 10000
106 = 1000000
Вы заметили, что степени десяти – это единица с таким количеством нулей, каков показатель степени?