E A. Ширяева Задачник (ОГЭ 2012) 19. Анализ геометрических высказываний Часть 1. ФИПИ Задание. Укажите (обведите) номера верных утверждений. І) Начальные геометрические сведения (отрезки, прямые и углы) 1. Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка. 2. Существуют три прямые, которые проходят через одну точку. 3. Смежные углы всегда равны. 4. Вертикальные углы равны, 5. Всегда один из двух смежных углов острый, а другой тупой. 6. Через заданную точку плоскости можно провести только одну прямую. 7. Если точка лежит на биссектрисе угла, то она равноудалена от сторон этого угла. 8. Если угол острый, то смежный с ним угол также является острым. ІІ) Параллельные и перпендикулярные прямые 9. Две прямые, параллельные третьей прямой, перпендикулярны. 10. Две прямые, перпендикулярные третьей прямой, перпендикулярны. 11. Две различные прямые, перпендикулярные третьей прямой, парал- Аельны. 12. Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой. 13. Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой. П) Треугольник 14. Если в треугольнике есть один острый угол, то этот треугольник остро- угольный, 16. В любом тупоугольном треугольнике есть острый угол. 16. В тупоугольном треугольнике все углы тупые. 17. В остроугольном треугольнике все углы острые, 18. В треугольнике против большего угла лежит большая сторона 19. Внешний угол треугольника больше не смежного с ним внутреннего угла. 20. Внешний угол треугольника равен сумме его внутренних углов
18 см
Пошаговое объяснение:
1) Если через две названные точки, являющиеся серединами диагоналей трапеции, провести линию, пересекающую боковые стороны трапеции, то получим 2 треугольника, каждый из которых опирается на сторону 8 см, и в каждом из которых продолжение линии за стороной, являющейся диагональю трапеции, является средней линий, т.к. проведенная линия параллельна основания трапеции.
2) Средняя линия равна 1/2 той стороны, которой она параллельна.
Значит, средняя линия каждого из треугольников равна:
8 : 2 = 4 см.
3) Теперь можно рассчитать среднюю линию трапеции.
Она состоит из 3-х отрезков:
4 см (средняя линия первого треугольника) + 5 см (расстояние между точками, являющими серединами диагоналей трапеции) + 4 см (средняя линия второго треугольника) = 13 см
3) Средняя линия трапеции равна полусумме её оснований. Составим уравнение и решим его:
(8+х) / 2 = 13, где х - второе основание, которое нам надо найти.
8+х = 26,
х = 18 см
ответ: 18 см.