Пусть a1 чел. посещают только первый спецкурс, a2 чел. - только второй и a3 чел. - только третий. Пусть a12 чел. посещают первый и второй спецкурсы, a13 чел. - первый и третий и a23 чел. - второй и третий. По условию,
a1+a12+a13=90
a2+a12+a23=130
a3+a13+a23=60
a1+a2+a3=5*(a12+a13+a23)
Для решения полученной системы сложим первые три уравнения. После этого получим систему:
a1+a2+a3+2*(a12+a13+a23)=280
a1+a2+a3=5*(a12+a13+a23)
Отсюда 7*(a12+a13+a23)=280 и a12+a13+a23=40. Тогда a1+a2+a3=5*40=200 чел.
ответ:ето
Пошаговое объяснение:
Примеры
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
ответ: 200 студентов.
Пошаговое объяснение:
Пусть a1 чел. посещают только первый спецкурс, a2 чел. - только второй и a3 чел. - только третий. Пусть a12 чел. посещают первый и второй спецкурсы, a13 чел. - первый и третий и a23 чел. - второй и третий. По условию,
a1+a12+a13=90
a2+a12+a23=130
a3+a13+a23=60
a1+a2+a3=5*(a12+a13+a23)
Для решения полученной системы сложим первые три уравнения. После этого получим систему:
a1+a2+a3+2*(a12+a13+a23)=280
a1+a2+a3=5*(a12+a13+a23)
Отсюда 7*(a12+a13+a23)=280 и a12+a13+a23=40. Тогда a1+a2+a3=5*40=200 чел.