В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
ogbondarenko
ogbondarenko
13.07.2021 00:54 •  Математика

Из данных чисел составте пропорцию 3,4,24,32, 3,6,36,18 4,7,28,49​

Показать ответ
Ответ:
тупойуголь
тупойуголь
09.08.2022 10:59
Произведем замену. Пусть x^2=t(t \geq 0), тогда придем к уравнению вида t^2+(a-3)t+(a+10)^2=0. Поскольку t - положительное число, то корни квадратного трехчлена At^2+Bt+C с действительными коэффициентами оба действительны и оба больше данного числа \gamma (t_1\ \textgreater \ \gamma,\,\, t_2\ \textgreater \ \gamma), когда \begin{cases}
 & \text{ } B^2-4AC \geq 0 \\ 
 & \text{ } A(A\gamma^2+B\gamma+C)\ \textgreater \ 0 \\ 
 & \text{ } \gamma\ \textless \ - \dfrac{B}{2A} 
\end{cases}.

Согласно этому и условию, имеем \begin{cases}
 & \text{ } (a-3)^2-4(a+10)^2 \geq 0 \\ 
 & \text{ } 1\cdot(1\cdot 0^2+B\cdot 0+(a+10)^2)\ \textgreater \ 0 \\ 
 & \text{ } 0\ \textless \ - \dfrac{a-3}{2} 
\end{cases}

Рассмотрим неравенства отдельно

(a-3)^2-4(a+10)^2 \geq 0. Применяя формулу сокращенного умножения (a-b)(a+b)=a^2-b^2 в левой части неравенства, получим (a-3-2a-20)(a-3+2a+10) \geq 0, тогда (-a-23)(3a+7) \geq 0. Приравняв к нулю, получим корни a_1=-23;\,\,\, a_2=- \frac{7}{3}

(a+10)^2\ \textgreater \ 0. Левая часть неравенства принимает только положительные значения, значит неравенство выполняется при a \in (-\infty;-10)\cup(-10;+\infty)

0\ \textless \ -\frac{a-3}{2}. Умножив обе части неравенства на 2, получим -a+3\ \textgreater \ 0   откуда  a\ \textless \ 3

Общее решение системы неравенств a \in [-23;-10)\cup(-10;- \frac{7}{3} ]

Проверим теперь некоторые нюансы. Если a=-23, то неравенство примет вид x^4-26x^2+169=0. Используя формулу сокращенного умножения (a-b)^2=a^2-2ab+b^2, получим (x^2-13)^2=0, тогда x^2=13 откуда x=\pm \sqrt{13}. Значит при а=-23 уравнение имеет 2 корня, следовательно, а=-23 нам не подходит.

Если a=- \frac{7}{3}, то уравнение примет вид 9x^4-48x^2+529=0. Решив квадратное уравнение относительно x^2, имеем D=(-48)^2-4\cdot9\cdot529\ \textless \ 0. Поскольку D<0, то квадратное уравнение действительных корней не имеет. 

ответ: a\in (-23;-10)\cup(-10;- \frac{7}{3} )
0,0(0 оценок)
Ответ:
NikkiLee
NikkiLee
24.02.2020 21:32
1) 7 4/20 - 2 15/20 = 144/20 - 55/20 = 89/20 = 4 9/20(дм) - вторая сторона
                                                                                             треугольника
2) 7 4/20 + 4 9/20 = 11 13/20(дм) - сумма двух сторон треугольника
3) 17 - 11 13/20 = 5 7/20(дм)
ответ: 5целых 7/20 дм - третья сторона треугольника.
Задание №2
Для того, чтобы найти  дробь со знаменателем 15, необходимо и числитель и знаменатель данной дроби 1/ 3 умножить на 5. Значение дроби при этом не изменится.
1/3 = 1* 5 / 3 * 5 = 5/15
1/3 = 5/15
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота