Найдите длину окружности с радиусом, равным радиусу колеса, площадь которого равна 50,24 см2. *
4π см
6π см
8π см
Сжать выражение 10π см: 9(9a+3B-2)-(72a+26a-20)-(9a+b-1) =? *
1
-1
2
Масштаб 3 карты равен 1:100000. Найдите длину этого расстояния на поверхности земли, если длина прямой линии между городами Ливерпуль и Манчестер равна 0,32 м на этой карте. *
32 км
320 км
3,2 км
0,32 км
31. какой день недели наступит после 18 дней, если сегодня понедельник? *
воскресенье
пятница
суббота
вторник
У МЕНЯ ТЕСТ ПОЖАЙЛСУТСТА УМАЛЯЮ ОН ОЧЕНЬ ВАЖНЫЙ БУДУ ОЧЧЧЕНЬ БЛАГОДАРЕН
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
1.1 прямо пропорциональные, например расстояние и время
1.3 обратно пропорциональные, например скорость и время
Пошаговое объяснение:
1.1 Прямая пропорциональность — это зависимость двух величин, при которой одна величина зависит от второй величины так, что их отношение остаётся неизменным. Такие величины называются прямо пропорциональными, т.е. при увеличении (или уменьшении) одной из них в несколько раз другая увеличивается (или уменьшается) во столько же раз.
1.2Обратная пропорциональность — это зависимость двух величин, при которой увеличение одной величины приводит к пропорциональному уменьшению другой.
1.3 две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.