Пошаговое объяснение:
y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y=(-4x-4)/5 y=-4x/5-4/5
а) 5x-2=-4x/5-4/5
5x+4x/5=-4/5+2
29x/5=6/5
x=6/29 y=5*(6/29)-2=30/29-58/29=-28/29
Точка пересечения прямых (6,29;-28.29)
б) угол между прямыми можно найти по формуле
tgφ=(k₂-k₁)/(1+k₁k₂)
где k₁ и k₂ угловые коэффициенты, в наших уравнения они равны
k₁=5; k₂=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k₁k₂=0):
1+5*(-4/5)=1-4=-3≠0 - значит прямые не перпендикулярны
Подставляем значения коэффициентов в формулу нахождения угла:
tgφ=(-4/5-5)/-3=29/15
φ=arctg(29/15) ≈ 1,0934 рад ≈ 63°
Y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y = (-4x-4) / 5 y=-4x/5-4/5
x=6/29 y=5 * (6/29) - 2=30/29-58/29=-28/29
tgφ = (k2-k1) / (1+k1k2)
где k1 и k2 угловые коэффициенты, в наших уравнения они равны
k1=5; k2=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k1k2=0) :
1+5 * (-4/5) = 1-4=-3≠0 - значит прямые не перпендикулярны
tgφ = (-4/5-5) / - 3=29/15
φ=arctg (29/15) ≈ 1,0934 рад ≈ 63° 5x - 2 = -0,8x - 0,8;
5x + 0,8x = 2 - 0,8;
5,8x = 1,2;
x = 1,2 / 5,8 = 12/58 = 6/29.
y = 5x - 2 = 5 * 6/29 - 2 = 30/29 - 58/29 = -28/29.
(x; y) = (6/29; -28/29). tg(α1) = k1 = 5;
tg(α2) = k2 = -0,8;
tgα = |tg(α1 - α2)|;
tgα = |(tg(α1) - tg(α2)) / (1 + tg(α1)tg(α2))|;
tgα = |(k1 - k2) / (1 + k1k2)|;
tgα = |(5 + 0,8) / (1 - 5 * 0,8)|;
tgα = |5,8 / (-3)| = 29/15;
α = arctg(29/15).
а) точка пересечения прямых: (6/29; -28/29);
708
1)0,04х=2
х=2:0,04
x=50
2)0,132x=132
x=132:0,132
x=1000
3)17,5x=0,63
x=0,63:17,5
x=0,036
4)0,34x=10,54
x=10,54:0,34
x=31
5)0,32x=16,48
x=16,48:0,32
x=51,5
6)1,2x=4,02
x=4,02:1,2
x=3,35
709
1)4,37:1,9+8,78=11,08
4,37:1,9=2,3
2,3+8,78=11,08
2)7,91-6,72:1,2=2,31
6,72:1,2=5,6
7,91-56=2,31
3)6,88:1,6-3,99=0,31
6,88:1,6=4,3
4,3-3,99=0,31
4)10,05+7,31:1,7=14,35
7,31:1,7=4,3
10,05+4,3=14,35
5)85,8:0,33-258,1=1,9
85,8:0,33=260
260-258,1=1,9
6)1,968:0,41+28,2=33
1,968:0,41=4,8
4,8+28,2=33
Пошаговое объяснение:
y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y=(-4x-4)/5 y=-4x/5-4/5
а) 5x-2=-4x/5-4/5
5x+4x/5=-4/5+2
29x/5=6/5
x=6/29 y=5*(6/29)-2=30/29-58/29=-28/29
Точка пересечения прямых (6,29;-28.29)
б) угол между прямыми можно найти по формуле
tgφ=(k₂-k₁)/(1+k₁k₂)
где k₁ и k₂ угловые коэффициенты, в наших уравнения они равны
k₁=5; k₂=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k₁k₂=0):
1+5*(-4/5)=1-4=-3≠0 - значит прямые не перпендикулярны
Подставляем значения коэффициентов в формулу нахождения угла:
tgφ=(-4/5-5)/-3=29/15
φ=arctg(29/15) ≈ 1,0934 рад ≈ 63°
Y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y = (-4x-4) / 5 y=-4x/5-4/5
а) 5x-2=-4x/5-4/5
5x+4x/5=-4/5+2
29x/5=6/5
x=6/29 y=5 * (6/29) - 2=30/29-58/29=-28/29
Точка пересечения прямых (6,29;-28.29)
б) угол между прямыми можно найти по формуле
tgφ = (k2-k1) / (1+k1k2)
где k1 и k2 угловые коэффициенты, в наших уравнения они равны
k1=5; k2=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k1k2=0) :
1+5 * (-4/5) = 1-4=-3≠0 - значит прямые не перпендикулярны
Подставляем значения коэффициентов в формулу нахождения угла:
tgφ = (-4/5-5) / - 3=29/15
φ=arctg (29/15) ≈ 1,0934 рад ≈ 63° 5x - 2 = -0,8x - 0,8;
5x + 0,8x = 2 - 0,8;
5,8x = 1,2;
x = 1,2 / 5,8 = 12/58 = 6/29.
y = 5x - 2 = 5 * 6/29 - 2 = 30/29 - 58/29 = -28/29.
(x; y) = (6/29; -28/29). tg(α1) = k1 = 5;
tg(α2) = k2 = -0,8;
tgα = |tg(α1 - α2)|;
tgα = |(tg(α1) - tg(α2)) / (1 + tg(α1)tg(α2))|;
tgα = |(k1 - k2) / (1 + k1k2)|;
tgα = |(5 + 0,8) / (1 - 5 * 0,8)|;
tgα = |5,8 / (-3)| = 29/15;
α = arctg(29/15).
а) точка пересечения прямых: (6/29; -28/29);
Пошаговое объяснение:
708
1)0,04х=2
х=2:0,04
x=50
2)0,132x=132
x=132:0,132
x=1000
3)17,5x=0,63
x=0,63:17,5
x=0,036
4)0,34x=10,54
x=10,54:0,34
x=31
5)0,32x=16,48
x=16,48:0,32
x=51,5
6)1,2x=4,02
x=4,02:1,2
x=3,35
709
1)4,37:1,9+8,78=11,08
4,37:1,9=2,3
2,3+8,78=11,08
2)7,91-6,72:1,2=2,31
6,72:1,2=5,6
7,91-56=2,31
3)6,88:1,6-3,99=0,31
6,88:1,6=4,3
4,3-3,99=0,31
4)10,05+7,31:1,7=14,35
7,31:1,7=4,3
10,05+4,3=14,35
5)85,8:0,33-258,1=1,9
85,8:0,33=260
260-258,1=1,9
6)1,968:0,41+28,2=33
1,968:0,41=4,8
4,8+28,2=33