Основные стороны прямоугольного параллелепипеда составляют 5 см и 12 см, а его диагональ с плоскостью основания составляет угол 45 °. Найдите длину его боковой метки.
Пусть скорость автобуса на участке АВ равна х км/ч, тогда скорость волги на этом же участке равна 4х км/ч. На участке ВС автобус разогнался до скорости х+40 км/ч, а волга до скорости 4х+40 км/ч, что, по условию задачи, в два раза быстрее стрости автобуса и равна (х+40)*2.
Получаем уравнение:
4х+40=(х+40)*2
4х+40=2х+80
4х-2х=80-40
2х=40
х=40/2
х=20
Скорость автобуса на участке АВ равна 20 км/ч.
Наибольшая скорость автобуса (на участке ВС) равна 20+40=60 км/ч
Наибольшая скорость волги (на участке ВС) равна 60*2=120 км/ч
Рисуем прямоугольник АВСК , проводим диагональ АС (в прямоугольнике диагонали одинаковы ) . АВ=СК=х см , значит ВС=АК=12/х см (т.к. S = а*в) . Р прям. = 2(а+в)=2*(х+12/х)=14 , приводим у общему знаменателю : 2х^2+24=14х 2х^2-14х+24=0 D=196-192=4=2^2 Х=(14-2)/4=3 или (14+2)/4=4 Разницы какой х Вы возьмете нету , потому что если будет 3 то другая сторона будет 12/3=4 , а если - 4 , то другая - 12/4=3 ( что так , что так будет 3 и 4) , теперь смотрим на треугольник АСК , АС=корень из ( 9+16) = 5 см
Пусть скорость автобуса на участке АВ равна х км/ч, тогда скорость волги на этом же участке равна 4х км/ч. На участке ВС автобус разогнался до скорости х+40 км/ч, а волга до скорости 4х+40 км/ч, что, по условию задачи, в два раза быстрее стрости автобуса и равна (х+40)*2.
Получаем уравнение:
4х+40=(х+40)*2
4х+40=2х+80
4х-2х=80-40
2х=40
х=40/2
х=20
Скорость автобуса на участке АВ равна 20 км/ч.
Наибольшая скорость автобуса (на участке ВС) равна 20+40=60 км/ч
Наибольшая скорость волги (на участке ВС) равна 60*2=120 км/ч
Или так 20*4+40=80+40=120 км/ч