При пересечении диагоналей получим прямоугольные тр-ки , где гипотенуза 10 см. один из катетов 16/2=8 , второй катет √10²-8²=√36=6 значит меньшая диагональ равна 12 см радиус вписанной окружности r=S/2a=96/2*10=4.8см треугольник образованный касательной параллельной меньшей диагонали подобен треугольнику образованному при проведении данной его высота есть 1/2 большей диагонали и равна 8.высота подобного треугольника равна 8-4.8(r)=3.2 ⇒коэф. подобия равен 3,2:8=0,4 искомый отрезок есть основание тр-ка соответствующий меньшей диагонали ,являющейся основанием большого тр-ка его длина равна 12*0.4=4.8см
радиус вписанной окружности r=S/2a=96/2*10=4.8см
треугольник образованный касательной параллельной меньшей диагонали подобен треугольнику образованному при проведении данной его высота есть 1/2 большей диагонали и равна 8.высота подобного треугольника равна 8-4.8(r)=3.2 ⇒коэф. подобия равен 3,2:8=0,4 искомый отрезок есть основание тр-ка соответствующий меньшей диагонали ,являющейся основанием большого тр-ка его длина равна 12*0.4=4.8см
S=184,96см^2
Найти площадь закрашенной
части фигуры.
Пошаговое объяснение:
Дано:
d=16см
Р□=16см
п=~3,14
S=?
1.
Находим длину стороны квад
рата ( обозначим ее "а"):
а=Р□ : 4
а=16:4=4(см) сторона квадрата.
2.
Вычислим площадь квадрата:
S□=a×a
S□=4×4=16(см^2) площадь квад
рата.
3.
Радиус круга составляет поло
вину его диаметра:
d - диаметр;
R - радиус.
R=d/2
R=16:2=8(см)
Находим площадь круга:
S○= пR^2
S○=3,14×8^2=3,14×64=
=200,96(см^2)
4.
Находим площадь искомой
фигуры:
S= S○ - S□
S=200,96-16=184,96(см^2)
S=184,96см^2.