В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Маркус337
Маркус337
12.03.2020 04:04 •  Математика

ответить на теоритические вопросы: 1. Поняття лінійного простору, найпростіші наслідки аксіом. Приклади.
Ізоморфізм. Лінійна залежність і незалежність елементів.
2. Базис простору, вимірність, координати векторів..
3. Нормовані простори. Евклідові простори та унітарні простори.
Поняття, приклади. Ортогональні та ортонормовані системи.
4. Лінійні перетворення. Матриця лінійного перетворення. Область
значень, ядро, ранг. Характеристичні форми і власні значення. Квадратичні
форми.
5. Система комплексних чисел. Різні форми комплексного числа. Дії.
6. Поліноми. Дії. Дільники. Найбільший спільний дільник. Алгоритм
Евкліда.

Показать ответ
Ответ:
Анастасия2007997
Анастасия2007997
08.06.2020 07:50

ответ:

документа

«проект "многоугольники"»

гбпоу ао «котласский транспортный техникум»

индивидуальный проект по теме:

«построение правильных многоугольников»

выполнил: обучающийся 1 курса

группа № 296

михайлов богдан владимирович

проверил: преподаватель

е.н. витязева

пос. вычегодский

2017 год

содержание

1.введение

2. определение правильного многоугольника.

2.треугольник

3.квадрат

4.пятиугольник

5. пентаграмма

6.шестиугольник

7.гексаграмма

8.правильные восьмиугольник (октагон)

9.семиугольник

10.гептаграмма

11.октаграмма

12.девятиугольник

13. заключение.

14.список .

введение

цель проекта - изготовить наглядное пособие по теме "построение правильных многоугольников".

:

1. изучить по данной теме.

2. отобрать материал для выполнения проекта.

3. познакомиться с правильных многоугольников.

4.изучить способы построения некоторых правильных многоугольников.

5. подготовить презентацию для защиты проекта.

актуальность.

при изучении предмета важно уметь правильно и красиво выполнять чертежи как для решения так и для самостоятельного изображения фигур. в школьном курсе изучаются обычно 3 вида правильных многоугольников: равносторонний треугольник, квадрат, правильный шестиугольник. моя работа расширить студентам сведения о правильных многоугольниках и поддержать интерес к изучению .

определение правильного многоугольника.

пра́вильный многоуго́льник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.

определение правильного многоугольника может зависеть от определения многоугольника: если он определён как плоская замкнутая ломаная, то появляется определение правильного звёздчатого многоугольника как невыпуклого многоугольника, у которого все стороны между собой равны и все углы между собой равны.

построение правильного многоугольника с n сторонами оставалось проблемой для вплоть до xix века. такое построение идентично разделению окружности на n равных частей, так как соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник.

средневековая почти никак не продвинулась в этом вопросе. лишь в 1796 году карлу фридриху гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу ферма, то его можно построить при циркуля и линейки. на сегодняшний день известны следующие простые числа ферма: 3, 5, 17, 257, 65537. вопрос о наличии или отсутствии других таких чисел остаётся открытым.

точку в деле построения правильных многоугольников поставило нахождение построений 17-, 257- и 65537-угольника. первое было найдено йоханнесом эрхингером в 1825 году, второе — фридрихом юлиусом ришело в 1832 году, а последнее — иоганном густавом гермесом в 1894 году.

с тех пор проблема считается полностью решённой.

пя­ти­у­голь­ник - это многоугольник с пятью углами. также пятиугольником называют всякий предмет такой формы.

пентагра́мма - фигура, полученная соединением вершин правильного пятиугольника через одну; фигура, образованна совокупностью всех диагоналей правильного пятиугольника.

шестиугольник - многоугольник с шестью углами. также шестиугольником называют всякий предмет такой формы.

гексаграмма - звезда с шестью углами, которая образуется из двух наложенных друг на друга равносторонних треугольников.

правильный восьмиугольник (октагон)

фигура из группы правильных многоугольников. у него восемь сторон и восемь углов, все углы и стороны равны между собой.

семиуго́льник

называемый иногда гептагон многоугольник с семью углами. семиугольником также называют всякий предмет такой формы.

гептаграмма

(от греч. hepta – “семь” и gramma – “черта”) семиконечная фигура (звезда), магический знак семерицы.

октаграмма

восьмилучевая звезда, крестострел.

девятиуго́льник

многоугольник с девятью углами. девятиугольником также называют всякий предмет, имеющий такую форму.

заключение.

в ходе выполнения проекта я

1. изучил по данной теме.

2. отобрал материал для выполнения проекта.

3. познакомился правильных многоугольников.

4.изучил способы построения некоторых правильных многоугольников.

5. подготовил презентацию для защиты проекта.

0,0(0 оценок)
Ответ:
Sayonara13
Sayonara13
29.04.2022 00:13
Решение:
Прежде чем вычислить сумму квадратов этих чисел,
найдём эти числа, для этого обозначим эти числа за (х) и (у),
тогда согласно условия задачи:
х+у=15   (1)
Средне-арифметическое этих двух чисел равно:
(х+у)/2
Средне геометрическое этих двух чисел равно:
√(х*у)
25% средне геометрического числа равно:
25% *√(ху) :100%=0,25*√(ху)=0,25√(ху)
Согласно условия задачи составим второе уравнение:
(х+у)/2 - √(ху)=0,25√(ху)
(х+у)/2=0,25√(ху)+√(ху)
(х+у)/2=1,25√(ху)
(х+у)=2*1,25√(ху)
х+у=2,5√(ху)   (2)
Решим получившуюся систему из двух уравнений:
х+у=15
х+у=2,5√(ху)
Из первого уравнения системы уравнений найдём значение (х)
х=15-у  -подставим значение (х) во второе уравнение
15-у+у=2,5√[(15-y)*y]
15=2,5√(15y-y²)  чтобы избавиться от иррациональности в правой части, возведём левую и правую части уравнения в квадрат:
225=6,25*(15у-у²)
225=93,75у-6,25у²
6,25у²-93,75у+225=0
у1,2=(93,75+-D)/2*6,25
D=√(93,75² -4*6,25*225)=√(8789,0625-5625)=√3164,0625=56.25
у1,2=(93,75+-56,25)/12,5
у1=(93,75+56,26)/12,5=150/12,5=12
у2=(93,75-56,25)/12,5=37,5/12,5=3
Подставим значения (у1) и (у2) в х=15-у
х1=15-12=3
х2=15-3=12
Из получившихся чисел можно сделать вывод, что эти два числа 12 и 3
Отсюда сумма квадратов этих чисел равна:
12²+3²=144+9=153

ответ: 153
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота