В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
gerasi1
gerasi1
31.07.2021 17:08 •  Математика

По кругу написано 7 натуральных чисел. попробуйте доказать, что найдутся два соседних числа, сумма которых чётна.

Показать ответ
Ответ:
dgumaeva17
dgumaeva17
08.10.2020 22:08

Для двух соседних четных или двух соседних нечетных ничего доказывать не нужно. Очевидно, что:

2n + 2(n+k) = 2(2n+k) - четное при любых n; k∈N, и

(2n - 1) + (2(n+k) - 1) = 2(2n+k) - 2 - четное при любых n; k∈N.

Допустим, что все числа написаны в максимально "неприятном" для нас порядке, - четные и нечетные числа чередуются. Возможны 2 варианта: первое число четное и первое число нечетное.

В первом случае рядом оказываются четные числа под номерами 1 и 7 (если первое число четное и равно 2n, то и седьмое также четное и равно 2(n + k). n; k∈N).

Во втором случае рядом оказываются нечетные числа под номерами 1 и 7 (если первое число нечетное и равно 2n - 1, то и седьмое число также нечетное и равно 2(n + k) - 1. n; k∈N).

Понятное дело, что сумма двух четных так же, как и сумма двух нечетных чисел, есть число четное:

2n + 2(n + k) = 2(2n + k) - четное при любых n; k∈N,

2n - 1 + 2(n + k) - 1 = 2(2n + k) - 2 - четное при любых n; k∈N.

Таким образом, при любом размещении семи натуральных чисел по кругу всегда найдутся два соседних, сумма которых четна.

0,0(0 оценок)
Ответ:
9827816
9827816
08.10.2020 22:08

при нечётном количестве чисел в кругу сумма первого и последнего числа всегда будет чётной

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота