Верно? Вы хоть напишите, что это разные уравнения, а не связанные в систему или совокупность.
Внизу есть символ-икнока "ПИ". С его можно коректно оформлять задачи.
1*) решим вот такое ; ; ; ; ; ; ;
2*) решим вот такое:
Сначала ищём ОДЗ. Иначе будут неконтролируемые посторонние корни. По определению корня, подкоренное выражение неотрицательно. А кроме того, значение квадратного арифметического корня само по себе неотрицательно. А значит:
Отсюда:
Значит x ∈ [ 3 ; 10.5 ]
Теперь исходное уравнение возводим в квадрат: =>
не подходит по ОДЗ. Значит решение единственно: x=6;
2)
Верно?
Вы хоть напишите, что это разные уравнения, а не связанные в систему или совокупность.
Внизу есть символ-икнока "ПИ".
С его можно коректно оформлять задачи.
1*) решим вот такое
;
;
;
;
;
;
;
2*) решим вот такое:
Сначала ищём ОДЗ. Иначе будут неконтролируемые посторонние корни.
По определению корня, подкоренное выражение неотрицательно. А кроме того, значение квадратного арифметического корня само по себе неотрицательно. А значит:
Отсюда:
Значит x ∈ [ 3 ; 10.5 ]
Теперь исходное уравнение возводим в квадрат:
=>
не подходит по ОДЗ. Значит решение единственно:
x=6;
х:121=3647+1265
х:121=4912
х=4912×121
х=594352
проверка
594352:121-1265=3647
4912-1265=3647
3647=3647
787×х-7286=20259
787×х=20259+7286
787×х=27545
х=27545:787
х=35 проверка
787×35-7286=20259
20259=20259
120+х×3=375
3х=375-120
3х=255
х=255:3
х=85 проверка
120+85×3=375
120+255=375
375=375
24000:(х-12)=80
24000=80×(х-12)
24000=80х-960
80х=24000+960
80х=24960
х=24960:80
х=312 проверка
24000:(312-12)=80
24000:300 =80
80=80
х:26+1254=2610
х:26=2610-1254
х:26=1356
х=1356×26
х=35256 проверка
35256:26+1254=2610
1356 +1254=2610
2610=2610