Рівнобедрений трикутник АBC з висотою 16 см, що проведена до його основи, перегнули по середній лінії MN, паралельній основі АС, так, що вершина B віддалена від площини чотирикутника ACNM на 4 см.
1) Знайдіть кут між площинами AMC i MBN.
2) Побудуйте лінійний кут двогранного кута ВМNС і знайдіть його кутову міру, якщо ортогональна проекція вершини B на площину чотирикутника AMNC лежить за його межами.
3) Порівняйте кутові міри двогранного кута BMNC і кута
BMA.
4) Знайдіть відстань від точки В до прямої АС.
5) Знайдіть відстань від прямої MN до площини ABC.
6) Побудуйте лінію перетину площин AMB i BNC.
ответ:
отложим одну монету, а на каждую чашу весов положим по две монеты. возможны два случая.
1) весы в равновесии. так как четырёх настоящих монет нет, то на одной чаше лежат обе фальшивые монеты. следующим взвешиванием достаточно сравнить веса монет с одной чаши: если весы в равновесии, то эти монеты настоящие, и фальшивые монеты в другой чаше; если весы не в равновесии, то фальшивые монеты – на весах.
2) одна из чаш перевесила. тогда на весах находится или только лёгкая фальшивая монета в более лёгкой чаше или только тяжёлая фальшивая монета в более тяжёлой чаше, или обе монеты находятся в разных чашах. вторым взвешиванием сравним веса монет в лёгкой чаше: если весы не в равновесии, то более лёгкая монета – фальшивая. если весы в равновесии, то отложенная монета – фальшивая (и она лёгкая). аналогично, третьим взвешиванием сравним веса монет из тяжёлой чаши: тогда, либо более тяжёлая монета – фальшивая, либо, если весы в равновесии, отложенная монета фальшивая (и она тяжёлая).
решение 2
первый раз положим на чаши весов первую и вторую монеты, а второй раз – третью и четвёртую. возможны только два случая.
1) один раз весы были в равновесии (пусть при первом взвешивании; при этом на чашах настоящие монеты), а другой раз – нет.
возьмем настоящую монету из первого взвешивания и сравним её с той, что оставалась на столе. если их веса равны, то последняя монета настоящая, а фальшивые – те, что участвовали во втором взвешивании. иначе, монета со стола – фальшивая, и мы знаем, легче она настоящей или тяжелее, а потому знаем, лёгкая или тяжёлая фальшивая монета участвовала во втором взвешивании.
2) оба раза весы были не в равновесии. тогда на весах каждый раз была одна фальшивая монета, а на столе осталась настоящая. взвесим её с лёгкой монетой из первого взвешивания. если веса равны, то в первом взвешивании фальшивой была более тяжёлая, а во втором – более лёгкая. если же более лёгкая монета из первого взвешивания оказалась легче, то она фальшивая, а из второго взвешивания фальшивая – более тяжёлая.
замечания
отметим, что решение 2 не использует то, что обе фальшивых монеты весят столько же, сколько две настоящих.
В решении.
Пошаговое объяснение:
Какие из следующих величин являются прямо пропорциональными, обратно пропорциональными и какие ни теми., ни другими?
Зависимость прямо пропорциональная - когда с увеличением одной величины увеличивается другая.
Зависимость обратно пропорциональная - когда с увеличением одной величины другая уменьшается.
1)Количество товара и его стоимость - чем больше товара, тем больше он стоит, прямо пропорциональная зависимость.
2)Скорость движения и время, необходимое для преодоления данного пути - чем выше скорость, тем меньше времени в пути, обратно пропорциональная зависимость.
3)Масса воды и ее объем - чем больше объём воды, тем больше её масса, прямо пропорциональная зависимость.
4)Скорость движения и длина пути, пройденного за определенное время - чем выше скорость, тем больше длина пути, прямо пропорциональная зависимость.
5)Длина и ширина прямоугольника данной площади. - нет зависимости.
6)Сторона квадрата и его площадь - чем больше сторона квадрата, тем больше его площадь, прямо пропорциональная зависимость.
7)Рост человека и его возраст - нет зависимости, когда человек вырос, а пока растёт - прямо пропорциональная, чем старше, тем выше.