1).Если нам известно конечное число(360), и речь идет о его 1/3, найдем ЧАСТЬ ОТ ЧИСЛА: (1/3) · 360 = 360:3 = 120 это 1/3 от 360: 2) По условию, то что мы нашли(120), только 2/5 задуманного числа. Найдем ЧИСЛО ПО ЕГО ЧАСТИ. 2/5ч = 120; 1ч=(120 : 2) · 5 = 60 · 5 = 300 ответ: 300 -это число, 2/5 которого равно 1/3 от 360 Проверка: (2/5)·300 = (1/3)·360; 120 = 120
Пусть наше число Х, составим и решим уравнение: (2/5) · Х = (1/3) · 360; Х = [(1/3) · 360] : (2/5); Х = (360 · 5)/(3 · 2); Х = 1800/6; Х = 300
1).Если нам известно конечное число(360), и речь идет о его 1/3, найдем ЧАСТЬ ОТ ЧИСЛА:
(1/3) · 360 = 360:3 = 120 это 1/3 от 360:
2) По условию, то что мы нашли(120), только 2/5 задуманного числа. Найдем ЧИСЛО ПО ЕГО ЧАСТИ.
2/5ч = 120; 1ч=(120 : 2) · 5 = 60 · 5 = 300
ответ: 300 -это число, 2/5 которого равно 1/3 от 360
Проверка: (2/5)·300 = (1/3)·360; 120 = 120
Пусть наше число Х, составим и решим уравнение:
(2/5) · Х = (1/3) · 360; Х = [(1/3) · 360] : (2/5); Х = (360 · 5)/(3 · 2); Х = 1800/6;
Х = 300
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)